These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 34330934)
1. Solving the inverse problem of time independent Fokker-Planck equation with a self supervised neural network method. Liu W; Kou CKL; Park KH; Lee HK Sci Rep; 2021 Jul; 11(1):15540. PubMed ID: 34330934 [TBL] [Abstract][Full Text] [Related]
2. Monte Carlo Simulation of Stochastic Differential Equation to Study Information Geometry. Thiruthummal AA; Kim EJ Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010777 [TBL] [Abstract][Full Text] [Related]
3. Neural network representation of the probability density function of diffusion processes. Uy WIT; Grigoriu MD Chaos; 2020 Sep; 30(9):093118. PubMed ID: 33003919 [TBL] [Abstract][Full Text] [Related]
4. A consistent approach for the treatment of Fermi acceleration in time-dependent billiards. Karlis AK; Diakonos FK; Constantoudis V Chaos; 2012 Jun; 22(2):026120. PubMed ID: 22757579 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the smallest nonvanishing eigenvalue of the fokker-planck equation for brownian motion in a potential: the continued fraction approach. Kalmykov YP Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6320-9. PubMed ID: 11088307 [TBL] [Abstract][Full Text] [Related]
6. Time-dependent probability density function in cubic stochastic processes. Kim EJ; Hollerbach R Phys Rev E; 2016 Nov; 94(5-1):052118. PubMed ID: 27967083 [TBL] [Abstract][Full Text] [Related]
7. Dynamical behavior of a nonlocal Fokker-Planck equation for a stochastic system with tempered stable noise. Lin L; Duan J; Wang X; Zhang Y Chaos; 2021 May; 31(5):051105. PubMed ID: 34240951 [TBL] [Abstract][Full Text] [Related]
9. A stochastic model of edge-localized modes in magnetically confined plasmas. Kim EJ; Hollerbach R Philos Trans A Math Phys Eng Sci; 2023 Feb; 381(2242):20210226. PubMed ID: 36587818 [TBL] [Abstract][Full Text] [Related]
10. Approximating distributions in stochastic learning. Leen TK; Friel R; Nielsen D Neural Netw; 2012 Aug; 32():219-28. PubMed ID: 22418034 [TBL] [Abstract][Full Text] [Related]
11. Mapping the Monte Carlo scheme to Langevin dynamics: a Fokker-Planck approach. Cheng XZ; Jalil MB; Lee HK; Okabe Y Phys Rev Lett; 2006 Feb; 96(6):067208. PubMed ID: 16606044 [TBL] [Abstract][Full Text] [Related]
12. Stochastic perturbation methods for spike-timing-dependent plasticity. Leen TK; Friel R Neural Comput; 2012 May; 24(5):1109-46. PubMed ID: 22295984 [TBL] [Abstract][Full Text] [Related]
13. Predicting properties of the stationary probability currents for two-species reaction systems without solving the Fokker-Planck equation. Mendler M; Drossel B Phys Rev E; 2020 Aug; 102(2-1):022208. PubMed ID: 32942514 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of the smallest nonvanishing eigenvalue of the fokker-planck equation for the brownian motion in a potential. II. The matrix continued fraction approach. Kalmykov YP Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):227-36. PubMed ID: 11088456 [TBL] [Abstract][Full Text] [Related]
15. Semiconductor laser systems excited by multiplicative Ornstein-Uhlenbeck noise and additive sine-Wiener noise in relation to real and imaginary parts. Han P; He G; Huang Z; Guo F Phys Rev E; 2024 Jun; 109(6-1):064126. PubMed ID: 39020954 [TBL] [Abstract][Full Text] [Related]
16. Deformed Fokker-Planck equation: Inhomogeneous medium with a position-dependent mass. da Costa BG; Gomez IS; Borges EP Phys Rev E; 2020 Dec; 102(6-1):062105. PubMed ID: 33465979 [TBL] [Abstract][Full Text] [Related]
17. Beating the curse of dimension with accurate statistics for the Fokker-Planck equation in complex turbulent systems. Chen N; Majda AJ Proc Natl Acad Sci U S A; 2017 Dec; 114(49):12864-12869. PubMed ID: 29158403 [TBL] [Abstract][Full Text] [Related]
18. Time-Dependent Probability Density Functions and Attractor Structure in Self-Organised Shear Flows. Jacquet Q; Kim EJ; Hollerbach R Entropy (Basel); 2018 Aug; 20(8):. PubMed ID: 33265702 [TBL] [Abstract][Full Text] [Related]
19. Discrete and continuous models for tissue growth and shrinkage. Yates CA J Theor Biol; 2014 Jun; 350():37-48. PubMed ID: 24512915 [TBL] [Abstract][Full Text] [Related]
20. Maximum Entropy Probability Density Principle in Probabilistic Investigations of Dynamic Systems. Náprstek J; Fischer C Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]