These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 34330968)
1. Analysis of planes within reduced micromorphic model. Dhaba ARE; Mousavi SM Sci Rep; 2021 Jul; 11(1):15537. PubMed ID: 34330968 [TBL] [Abstract][Full Text] [Related]
2. A Micromorphic Beam Theory for Beams with Elongated Microstructures. Shaat M; Ghavanloo E; Emam S Sci Rep; 2020 May; 10(1):7984. PubMed ID: 32409677 [TBL] [Abstract][Full Text] [Related]
3. A novel micromorphic approach captures non-locality in continuum bone remodelling. Titlbach A; Papastavrou A; McBride A; Steinmann P Comput Methods Biomech Biomed Engin; 2024 Jun; 27(8):1042-1055. PubMed ID: 37318076 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. Forest S Proc Math Phys Eng Sci; 2016 Apr; 472(2188):20150755. PubMed ID: 27274684 [TBL] [Abstract][Full Text] [Related]
5. First evidence of non-locality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model. Madeo A; Barbagallo G; d'Agostino MV; Placidi L; Neff P Proc Math Phys Eng Sci; 2016 Jun; 472(2190):20160169. PubMed ID: 27436984 [TBL] [Abstract][Full Text] [Related]
6. Reduced micromorphic model in orthogonal curvilinear coordinates and its application to a metamaterial hemisphere. El Dhaba AR Sci Rep; 2020 Feb; 10(1):2846. PubMed ID: 32071380 [TBL] [Abstract][Full Text] [Related]
7. A micromorphic model for steel fiber reinforced concrete. Oliver J; Mora DF; Huespe AE; Weyler R Int J Solids Struct; 2012 Oct; 49(21):2990-3007. PubMed ID: 24049211 [TBL] [Abstract][Full Text] [Related]
8. Continuum thermomechanics of nonlinear micromorphic, strain and stress gradient media. Forest S Philos Trans A Math Phys Eng Sci; 2020 May; 378(2170):20190169. PubMed ID: 32223410 [TBL] [Abstract][Full Text] [Related]
9. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part II - Nonlinear Examples. Almeida ES; Spilker RL Comput Methods Biomech Biomed Engin; 1998; 1(2):151-170. PubMed ID: 11264802 [TBL] [Abstract][Full Text] [Related]
10. The computation of dispersion relations for axisymmetric waveguides using the Scaled Boundary Finite Element Method. Gravenkamp H; Birk C; Song C Ultrasonics; 2014 Jul; 54(5):1373-85. PubMed ID: 24594445 [TBL] [Abstract][Full Text] [Related]
11. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I - Alternate Formulations. Almeida ES; Spilker RL Comput Methods Biomech Biomed Engin; 1997; 1(1):25-46. PubMed ID: 11264795 [TBL] [Abstract][Full Text] [Related]
12. Metamaterial shields for inner protection and outer tuning through a relaxed micromorphic approach. Rizzi G; Neff P; Madeo A Philos Trans A Math Phys Eng Sci; 2022 Sep; 380(2231):20210400. PubMed ID: 35858081 [TBL] [Abstract][Full Text] [Related]
13. Real wave propagation in the isotropic-relaxed micromorphic model. Neff P; Madeo A; Barbagallo G; d'Agostino MV; Abreu R; Ghiba ID Proc Math Phys Eng Sci; 2017 Jan; 473(2197):20160790. PubMed ID: 28265200 [TBL] [Abstract][Full Text] [Related]
14. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes. Spilker RL; de Almeida ES; Donzelli PS Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094 [TBL] [Abstract][Full Text] [Related]
15. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response. Hu L; Jiang S; Zhou T; Tu J; Shi L; Chen Q; Yang M Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 29027925 [TBL] [Abstract][Full Text] [Related]
16. A Geometrically Exact Model for Soft Continuum Robots: The Finite Element Deformation Space Formulation. Grazioso S; Di Gironimo G; Siciliano B Soft Robot; 2019 Dec; 6(6):790-811. PubMed ID: 30481112 [TBL] [Abstract][Full Text] [Related]
17. A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects. Gao XL; Zhang GY Proc Math Phys Eng Sci; 2016 Jul; 472(2191):20160275. PubMed ID: 27493578 [TBL] [Abstract][Full Text] [Related]
18. The analysis of localized effects in composites with periodic microstructure. Aboudi J; Ryvkin M Philos Trans A Math Phys Eng Sci; 2013 Jun; 371(1993):20120373. PubMed ID: 23690632 [TBL] [Abstract][Full Text] [Related]
19. A Lagrange multiplier mixed finite element formulation for three-dimensional contact of biphasic tissues. Yang T; Spilker RL J Biomech Eng; 2007 Jun; 129(3):457-71. PubMed ID: 17536914 [TBL] [Abstract][Full Text] [Related]