These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34331344)

  • 21. Plant growth-promoting bacteria improve leaf antioxidant metabolism of drought-stressed Neotropical trees.
    Tiepo AN; Constantino LV; Madeira TB; Gonçalves LSA; Pimenta JA; Bianchini E; de Oliveira ALM; Oliveira HC; Stolf-Moreira R
    Planta; 2020 Mar; 251(4):83. PubMed ID: 32189086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 2,4-Dichlorophenoxyacetic acid affects the attachment of Azospirillum brasilense Cd to maize roots.
    Jofré E; Mori G; Castro S; Fabra A; Rivarola V; Balegno H
    Toxicology; 1996 Jan; 107(1):9-15. PubMed ID: 8597034
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quaternary ammonium iminofullerenes improve root growth of oxidative-stress maize through ASA-GSH cycle modulating redox homeostasis of roots and ROS-mediated root-hair elongation.
    Tai F; Wang S; Liang B; Li Y; Wu J; Fan C; Hu X; Wang H; He R; Wang W
    J Nanobiotechnology; 2022 Jan; 20(1):15. PubMed ID: 34983547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants.
    Islam F; Yasmeen T; Arif MS; Riaz M; Shahzad SM; Imran Q; Ali I
    Plant Physiol Biochem; 2016 Nov; 108():456-467. PubMed ID: 27575042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes.
    Camilios-Neto D; Bonato P; Wassem R; Tadra-Sfeir MZ; Brusamarello-Santos LC; Valdameri G; Donatti L; Faoro H; Weiss VA; Chubatsu LS; Pedrosa FO; Souza EM
    BMC Genomics; 2014 May; 15(1):378. PubMed ID: 24886190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays).
    Herschkovitz Y; Lerner A; Davidov Y; Rothballer M; Hartmann A; Okon Y; Jurkevitch E
    Microb Ecol; 2005 Aug; 50(2):277-88. PubMed ID: 16211327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense.
    Fukami J; Ollero FJ; de la Osa C; Valderrama-Fernández R; Nogueira MA; Megías M; Hungria M
    Arch Microbiol; 2018 Oct; 200(8):1191-1203. PubMed ID: 29881875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elemental composition of strawberry plants inoculated with the plant growth-promoting bacterium Azospirillum brasilense REC3, assessed with scanning electron microscopy and energy dispersive X-ray analysis.
    Guerrero-Molina MF; Lovaisa NC; Salazar SM; Díaz-Ricci JC; Pedraza RO
    Plant Biol (Stuttg); 2014 Jul; 16(4):726-31. PubMed ID: 24148195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacillus thuringiensis RZ2MS9, a tropical plant growth-promoting rhizobacterium, colonizes maize endophytically and alters the plant's production of volatile organic compounds during co-inoculation with Azospirillum brasilense Ab-V5.
    de Almeida JR; Bonatelli ML; Batista BD; Teixeira-Silva NS; Mondin M; Dos Santos RC; Bento JMS; de Almeida Hayashibara CA; Azevedo JL; Quecine MC
    Environ Microbiol Rep; 2021 Dec; 13(6):812-821. PubMed ID: 34433236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alternative mechanism for the evaluation of indole-3-acetic acid (IAA) production by Azospirillum brasilense strains and its effects on the germination and growth of maize seedlings.
    Masciarelli O; Urbani L; Reinoso H; Luna V
    J Microbiol; 2013 Oct; 51(5):590-7. PubMed ID: 24037658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Additive and heterozygous (dis)advantage GWAS models reveal candidate genes involved in the genotypic variation of maize hybrids to Azospirillum brasilense.
    Vidotti MS; Lyra DH; Morosini JS; Granato ÍSC; Quecine MC; Azevedo JL; Fritsche-Neto R
    PLoS One; 2019; 14(9):e0222788. PubMed ID: 31536609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Azospirillum brasilense does not affect population structure of specific rhizobacterial communities of inoculated maize (Zea mays).
    Herschkovitz Y; Lerner A; Davidov Y; Okon Y; Jurkevitch E
    Environ Microbiol; 2005 Nov; 7(11):1847-52. PubMed ID: 16232299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3.
    Guerrero-Molina MF; Lovaisa NC; Salazar SM; Martínez-Zamora MG; Díaz-Ricci JC; Pedraza RO
    Plant Biol (Stuttg); 2015 May; 17(3):766-73. PubMed ID: 25280241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress.
    Ahsan N; Lee DG; Alam I; Kim PJ; Lee JJ; Ahn YO; Kwak SS; Lee IJ; Bahk JD; Kang KY; Renaut J; Komatsu S; Lee BH
    Proteomics; 2008 Sep; 8(17):3561-76. PubMed ID: 18752204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system.
    Kaya C; Ashraf M; Alyemeni MN; Corpas FJ; Ahmad P
    J Hazard Mater; 2020 Nov; 399():123020. PubMed ID: 32526442
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Co-inoculation with tropical strains of Azospirillum and Bacillus is more efficient than single inoculation for improving plant growth and nutrient uptake in maize.
    Ribeiro VP; Gomes EA; de Sousa SM; de Paula Lana UG; Coelho AM; Marriel IE; de Oliveira-Paiva CA
    Arch Microbiol; 2022 Jan; 204(2):143. PubMed ID: 35044594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of Azospirillum brasilense in triggering different Fe chelate reductase enzymes in cucumber plants subjected to both nutrient deficiency and toxicity.
    Marastoni L; Pii Y; Maver M; Valentinuzzi F; Cesco S; Mimmo T
    Plant Physiol Biochem; 2019 Mar; 136():118-126. PubMed ID: 30660677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Azospirillum brasilense viable cells enumeration using propidium monoazide-quantitative PCR.
    da Cunha ET; Pedrolo AM; Paludo F; Scariot MC; Arisi ACM
    Arch Microbiol; 2020 Sep; 202(7):1653-1662. PubMed ID: 32274559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biofertilization with Azospirillum brasilense improves in vitro culture of Handroanthus ochraceus, a forestry, ornamental and medicinal plant.
    Llorente BE; Alasia MA; Larraburu EE
    N Biotechnol; 2016 Jan; 33(1):32-40. PubMed ID: 26255131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs.
    Gómez-Godínez LJ; Fernandez-Valverde SL; Martinez Romero JC; Martínez-Romero E
    Syst Appl Microbiol; 2019 Jul; 42(4):517-525. PubMed ID: 31176475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.