BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 34332124)

  • 1. A Toolbox for Efficient Proximity-Dependent Biotinylation in Zebrafish Embryos.
    Rosenthal SM; Misra T; Abdouni H; Branon TC; Ting AY; Scott IC; Gingras AC
    Mol Cell Proteomics; 2021; 20():100128. PubMed ID: 34332124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Application of BioID and TurboID for Protein-Proximity Biotinylation.
    May DG; Scott KL; Campos AR; Roux KJ
    Cells; 2020 Apr; 9(5):. PubMed ID: 32344865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proximity Dependent Biotin Labelling in Zebrafish for Proteome and Interactome Profiling.
    Xiong Z; Lo HP; McMahon KA; Parton RG; Hall TE
    Bio Protoc; 2021 Oct; 11(19):e4178. PubMed ID: 34722825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embryonic senescence and laminopathies in a progeroid zebrafish model.
    Koshimizu E; Imamura S; Qi J; Toure J; Valdez DM; Carr CE; Hanai J; Kishi S
    PLoS One; 2011 Mar; 6(3):e17688. PubMed ID: 21479207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo proteomic mapping through GFP-directed proximity-dependent biotin labelling in zebrafish.
    Xiong Z; Lo HP; McMahon KA; Martel N; Jones A; Hill MM; Parton RG; Hall TE
    Elife; 2021 Feb; 10():. PubMed ID: 33591275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroID2: A Novel Biotin Ligase Enables Rapid Proximity-Dependent Proteomics.
    Johnson BS; Chafin L; Farkas D; Adair J; Elhance A; Farkas L; Bednash JS; Londino JD
    Mol Cell Proteomics; 2022 Jul; 21(7):100256. PubMed ID: 35688383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in
    Mair A; Xu SL; Branon TC; Ting AY; Bergmann DC
    Elife; 2019 Sep; 8():. PubMed ID: 31535972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AirID, a novel proximity biotinylation enzyme, for analysis of protein-protein interactions.
    Kido K; Yamanaka S; Nakano S; Motani K; Shinohara S; Nozawa A; Kosako H; Ito S; Sawasaki T
    Elife; 2020 May; 9():. PubMed ID: 32391793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple method for labeling proteins and antibodies with biotin using the proximity biotinylation enzyme TurboID.
    Shioya R; Yamada K; Kido K; Takahashi H; Nozawa A; Kosako H; Sawasaki T
    Biochem Biophys Res Commun; 2022 Feb; 592():54-59. PubMed ID: 35030423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TurboID functions as an efficient biotin ligase for BioID applications in Xenopus embryos.
    Kanzler CR; Donohue M; Dowdle ME; Sheets MD
    Dev Biol; 2022 Dec; 492():133-138. PubMed ID: 36270327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a heat shock inducible gfp transgenic zebrafish line by using the zebrafish hsp27 promoter.
    Wu YL; Pan X; Mudumana SP; Wang H; Kee PW; Gong Z
    Gene; 2008 Jan; 408(1-2):85-94. PubMed ID: 18037593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of TurboID-dependent biotinylation intensity in proximity ligation screens.
    Garloff V; Krüger T; Brakhage A; Rubio I
    J Proteomics; 2023 May; 279():104886. PubMed ID: 36966971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized Workflow for Enrichment and Identification of Biotinylated Peptides Using Tamavidin 2-REV for BioID and Cell Surface Proteomics.
    Nishino K; Yoshikawa H; Motani K; Kosako H
    J Proteome Res; 2022 Sep; 21(9):2094-2103. PubMed ID: 35979633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proximity-Dependent Biotin Identification (BioID) in Dictyostelium Amoebae.
    Batsios P; Meyer I; Gräf R
    Methods Enzymol; 2016; 569():23-42. PubMed ID: 26778551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying Cellular Dynamics Using Proximity-Dependent Biotinylation: Somatic Cell Reprogramming.
    Samson R; Zangari F; Gingras AC
    Methods Mol Biol; 2023; 2718():23-52. PubMed ID: 37665453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transgenic fish systems and their application in ecotoxicology.
    Lee O; Green JM; Tyler CR
    Crit Rev Toxicol; 2015 Feb; 45(2):124-41. PubMed ID: 25394772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of in vivo proximity labeling with biotin using TurboID in the filamentous fungus Sordaria macrospora.
    Hollstein LS; Schmitt K; Valerius O; Stahlhut G; Pöggeler S
    Sci Rep; 2022 Oct; 12(1):17727. PubMed ID: 36272986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular Proteomic Profiling Using Proximity Labeling by TurboID-NES in Microglial and Neuronal Cell Lines.
    Sunna S; Bowen C; Zeng H; Rayaprolu S; Kumar P; Bagchi P; Dammer EB; Guo Q; Duong DM; Bitarafan S; Natu A; Wood L; Seyfried NT; Rangaraju S
    Mol Cell Proteomics; 2023 Jun; 22(6):100546. PubMed ID: 37061046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viral 2A peptides allow expression of multiple proteins from a single ORF in transgenic zebrafish embryos.
    Provost E; Rhee J; Leach SD
    Genesis; 2007 Oct; 45(10):625-9. PubMed ID: 17941043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgenic labeling of hair cells in the zebrafish acousticolateralis system.
    McDermott BM; Asai Y; Baucom JM; Jani SD; Castellanos Y; Gomez G; McClintock JM; Starr CJ; Hudspeth AJ
    Gene Expr Patterns; 2010; 10(2-3):113-8. PubMed ID: 20085825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.