BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34332156)

  • 1. Adaptive current-flow models of ECT: Explaining individual static impedance, dynamic impedance, and brain current density.
    Unal G; Swami JK; Canela C; Cohen SL; Khadka N; FallahRad M; Short B; Argyelan M; Sackeim HA; Bikson M
    Brain Stimul; 2021; 14(5):1154-1168. PubMed ID: 34332156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-static pipeline in electroconvulsive therapy computational modeling.
    Unal G; Poon C; FallahRad M; Thahsin M; Argyelan M; Bikson M
    Brain Stimul; 2023; 16(2):607-618. PubMed ID: 36933652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic impedance is correlated with static impedance and seizure quality parameters in bifrontal electroconvulsive therapy.
    Exner J; Deuring G; Seifritz E; Brühl AB
    Acta Neuropsychiatr; 2023 Jun; 35(3):177-185. PubMed ID: 36803888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling stimulation strength and focality in electroconvulsive therapy via current amplitude and electrode size and spacing: comparison with magnetic seizure therapy.
    Deng ZD; Lisanby SH; Peterchev AV
    J ECT; 2013 Dec; 29(4):325-35. PubMed ID: 24263276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric field strength induced by electroconvulsive therapy is associated with clinical outcome.
    Fridgeirsson EA; Deng ZD; Denys D; van Waarde JA; van Wingen GA
    Neuroimage Clin; 2021; 30():102581. PubMed ID: 33588322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of anatomical variability on electric field characteristics of electroconvulsive therapy and magnetic seizure therapy: a parametric modeling study.
    Deng ZD; Lisanby SH; Peterchev AV
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):22-31. PubMed ID: 25055384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced tES and tDCS computational models by meninges emulation.
    Jiang J; Truong DQ; Esmaeilpour Z; Huang Y; Badran BW; Bikson M
    J Neural Eng; 2020 Jan; 17(1):016027. PubMed ID: 31689695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric Field Model of Transcranial Electric Stimulation in Nonhuman Primates: Correspondence to Individual Motor Threshold.
    Lee WH; Lisanby SH; Laine AF; Peterchev AV
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2095-105. PubMed ID: 25910001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical variability predicts individual differences in transcranial electric stimulation motor threshold.
    Lee WH; Lisanby SH; Laine AF; Peterchev AV
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():815-8. PubMed ID: 24109812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [ECT versus transcranial magnetic stimulation (TMS): preliminary data of computer modeling].
    Zyss T; Krawczyk A; Drzymała P; Starzyński J
    Psychiatr Pol; 1999; 33(6):909-23. PubMed ID: 10776027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: influence of white matter anisotropic conductivity.
    Lee WH; Deng ZD; Kim TS; Laine AF; Lisanby SH; Peterchev AV
    Neuroimage; 2012 Feb; 59(3):2110-23. PubMed ID: 22032945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model.
    Lee WH; Lisanby SH; Laine AF; Peterchev AV
    Eur Psychiatry; 2016 Aug; 36():55-64. PubMed ID: 27318858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computation of electric and magnetic stimulation in human head using the 3-D impedance method.
    Nadeem M; Thorlin T; Gandhi OP; Persson M
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):900-7. PubMed ID: 12848358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational model of direct brain excitation induced by electroconvulsive therapy: comparison among three conventional electrode placements.
    Bai S; Loo C; Al Abed A; Dokos S
    Brain Stimul; 2012 Jul; 5(3):408-421. PubMed ID: 21962983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing intracranial electric field distribution through temperature-driven scalp conductivity adjustments in transcranial electrical stimulation.
    Wang M; Zhang L; Hong W; Luo Y; Li H; Feng Z
    Phys Med Biol; 2024 Feb; 69(3):. PubMed ID: 38170996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling transcranial electric stimulation in mouse: a high resolution finite element study.
    Bernabei JM; Lee WH; Peterchev AV
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():406-9. PubMed ID: 25569982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
    Sajib SZK; Katoch N; Kim HJ; Kwon OI; Woo EJ
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2505-2514. PubMed ID: 28767360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurocapillary-Modulation.
    Khadka N; Bikson M
    Neuromodulation; 2022 Dec; 25(8):1299-1311. PubMed ID: 33340187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of computational models of transcranial electrical stimulation.
    Bai S; Loo C; Dokos S
    Crit Rev Biomed Eng; 2013; 41(1):21-35. PubMed ID: 23510007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of anatomical variability on neural stimulation strength and focality in electroconvulsive therapy (ECT) and magnetic seizure therapy (MST).
    Deng ZD; Lisanby SH; Peterchev AV
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():682-8. PubMed ID: 19964484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.