These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34332198)

  • 21. Predictive QSAR modeling of CCR5 antagonist piperidine derivatives using chemometric tools.
    Roy K; Mandal AS
    J Enzyme Inhib Med Chem; 2009 Feb; 24(1):205-23. PubMed ID: 18608745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and prediction of novel pyrazole derivatives as potential anti-cancer compounds based on 2D-2D-QSAR study against PC-3, B16F10, K562, MDA-MB-231, A2780, ACHN and NUGC cancer cell lines.
    Bennani FE; Doudach L; Karrouchi K; El Rhayam Y; Rudd CE; Ansar M; El Abbes Faouzi M
    Heliyon; 2022 Aug; 8(8):e10003. PubMed ID: 35965973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity.
    Sangion A; Gramatica P
    Environ Int; 2016 Oct; 95():131-43. PubMed ID: 27568576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing in vivo data and in silico predictions for acute effects assessment of biocidal active substances and metabolites for aquatic organisms.
    Blázquez M; Andreu-Sánchez O; Ranero I; Fernández-Cruz ML; Benfenati E
    Ecotoxicol Environ Saf; 2020 Dec; 205():111291. PubMed ID: 32956865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. OPERA models for predicting physicochemical properties and environmental fate endpoints.
    Mansouri K; Grulke CM; Judson RS; Williams AJ
    J Cheminform; 2018 Mar; 10(1):10. PubMed ID: 29520515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring 2D-QSAR for prediction of beta-secretase 1 (BACE1) inhibitory activity against Alzheimer's disease.
    Kumar V; Ojha PK; Saha A; Roy K
    SAR QSAR Environ Res; 2020 Feb; 31(2):87-133. PubMed ID: 31865778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How Precise Are Our Quantitative Structure-Activity Relationship Derived Predictions for New Query Chemicals?
    Roy K; Ambure P; Kar S
    ACS Omega; 2018 Sep; 3(9):11392-11406. PubMed ID: 31459245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ecotoxicological QSAR modelling of the acute toxicity of fused and non-fused polycyclic aromatic hydrocarbons (FNFPAHs) against two aquatic organisms: Consensus modelling and comparison with ECOSAR.
    Li F; Sun G; Fan T; Zhang N; Zhao L; Zhong R; Peng Y
    Aquat Toxicol; 2023 Feb; 255():106393. PubMed ID: 36621240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of soil ecotoxicity against
    Paul R; Roy J; Roy K
    SAR QSAR Environ Res; 2023 Apr; 34(4):321-340. PubMed ID: 37218661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors.
    Papa E; Dearden JC; Gramatica P
    Chemosphere; 2007 Feb; 67(2):351-8. PubMed ID: 17109926
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ecotoxicological QSAR modeling of endocrine disruptor chemicals.
    Khan K; Roy K; Benfenati E
    J Hazard Mater; 2019 May; 369():707-718. PubMed ID: 30831523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combinatorial QSAR of ambergris fragrance compounds.
    Kovatcheva A; Golbraikh A; Oloff S; Xiao YD; Zheng W; Wolschann P; Buchbauer G; Tropsha A
    J Chem Inf Comput Sci; 2004; 44(2):582-95. PubMed ID: 15032539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quick and efficient quantitative predictions of androgen receptor binding affinity for screening Endocrine Disruptor Chemicals using 2D-QSAR and Chemical Read-Across.
    Banerjee A; De P; Kumar V; Kar S; Roy K
    Chemosphere; 2022 Dec; 309(Pt 1):136579. PubMed ID: 36174732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 2D-quantitative structure-activity relationships model using PLS method for anti-malarial activities of anti-haemozoin compounds.
    Nguyen PTV; Van Dat T; Mizukami S; Nguyen DLH; Mosaddeque F; Kim SN; Nguyen DHB; Đinh OT; Vo TL; Nguyen GLT; Quoc Duong C; Mizuta S; Tam DNH; Truong MP; Huy NT; Hirayama K
    Malar J; 2021 Jun; 20(1):264. PubMed ID: 34116665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predictive in silico models for aquatic toxicity of cosmetic and personal care additive mixtures.
    Yang YT; Ni HG
    Water Res; 2023 Jun; 236():119981. PubMed ID: 37084578
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of MLR, PLS and GA-MLR in QSAR analysis.
    Saxena AK; Prathipati P
    SAR QSAR Environ Res; 2003; 14(5-6):433-45. PubMed ID: 14758986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring QSAR and QAAR for inhibitors of cytochrome P450 2A6 and 2A5 enzymes using GFA and G/PLS techniques.
    Roy K; Roy PP
    Eur J Med Chem; 2009 May; 44(5):1941-51. PubMed ID: 19110342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors.
    Kar S; Roy K
    J Hazard Mater; 2010 May; 177(1-3):344-51. PubMed ID: 20045248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of baseline toxicity and QSAR analysis of 50 non-polar and 58 polar narcotic chemicals for the alga Pseudokirchneriella subcapitata.
    Aruoja V; Moosus M; Kahru A; Sihtmäe M; Maran U
    Chemosphere; 2014 Feb; 96():23-32. PubMed ID: 23895738
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling bioconcentration factor (BCF) using mechanistically interpretable descriptors computed from open source tool "PaDEL-Descriptor".
    Pramanik S; Roy K
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):2955-65. PubMed ID: 24170502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.