These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34332214)

  • 1. Pilot evaluation of changes in motor control after wearable robotic resistance training in children with cerebral palsy.
    Conner BC; Schwartz MH; Lerner ZF
    J Biomech; 2021 Sep; 126():110601. PubMed ID: 34332214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors influencing neuromuscular responses to gait training with a robotic ankle exoskeleton in cerebral palsy.
    Conner BC; Spomer AM; Steele KM; Lerner ZF
    Assist Technol; 2023 Nov; 35(6):463-470. PubMed ID: 36194197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Ankle Resistance from a Wearable Robotic Device to Improve Muscle Recruitment in Cerebral Palsy.
    Conner BC; Luque J; Lerner ZF
    Ann Biomed Eng; 2020 Apr; 48(4):1309-1321. PubMed ID: 31950309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive ankle exoskeleton gait training demonstrates acute neuromuscular and spatiotemporal benefits for individuals with cerebral palsy: A pilot study.
    Fang Y; Orekhov G; Lerner ZF
    Gait Posture; 2022 Jun; 95():256-263. PubMed ID: 33248858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Battery-Powered Ankle Exoskeleton Improves Gait Mechanics in a Feasibility Study of Individuals with Cerebral Palsy.
    Lerner ZF; Harvey TA; Lawson JL
    Ann Biomed Eng; 2019 Jun; 47(6):1345-1356. PubMed ID: 30825030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Ankle Muscle Recruitment via Plantar Pressure Biofeedback during Robot Resisted Gait Training in Cerebral Palsy.
    Conner BC; Lerner ZF
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable Adaptive Resistance Training Improves Ankle Strength, Walking Efficiency and Mobility in Cerebral Palsy: A Pilot Clinical Trial.
    Conner BC; Remec NM; Orum EK; Frank EM; Lerner ZF
    IEEE Open J Eng Med Biol; 2020; 1():282-289. PubMed ID: 33251524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait synergetic neuromuscular control in children with cerebral palsy at different gross motor function classification system levels.
    Yu Y; Chen X; Cao S; Wu D; Zhang X; Chen X
    J Neurophysiol; 2019 May; 121(5):1680-1691. PubMed ID: 30892974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ankle dorsiflexor function after plantar flexor surgery in children with cerebral palsy.
    Davids JR; Rogozinski BM; Hardin JW; Davis RB
    J Bone Joint Surg Am; 2011 Dec; 93(23):e1381-7. PubMed ID: 22159860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overground Robot-Assisted Gait Training for Pediatric Cerebral Palsy.
    Kim SK; Park D; Yoo B; Shim D; Choi JO; Choi TY; Park ES
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory feedback to ankle plantar flexors is not exaggerated during gait in spastic hemiplegic children with cerebral palsy.
    Willerslev-Olsen M; Andersen JB; Sinkjaer T; Nielsen JB
    J Neurophysiol; 2014 Feb; 111(4):746-54. PubMed ID: 24225545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soleus H-reflex modulation in cerebral palsy and its relationship with neural control complexity: a pilot study.
    Conner BC; Spomer AM; Bishe SSPA; Steele KM; Lerner ZF
    Exp Brain Res; 2022 Aug; 240(7-8):2073-2084. PubMed ID: 35752662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuromuscular response to a single session of whole-body vibration in children with cerebral palsy: A pilot study.
    Liang V; Henderson G; Wu J
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105170. PubMed ID: 32920250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of corticospinal drive to ankle plantar flexor muscle activation during gait in adults with cerebral palsy.
    Frisk RF; Lorentzen J; Nielsen JB
    Exp Brain Res; 2019 Jun; 237(6):1457-1467. PubMed ID: 30900000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of sensory feedback to plantar flexor muscle activation during push-off in adults with cerebral palsy.
    Frisk RF; Jensen P; Kirk H; Bouyer LJ; Lorentzen J; Nielsen JB
    J Neurophysiol; 2017 Dec; 118(6):3165-3174. PubMed ID: 28904105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle synergies demonstrate only minimal changes after treatment in cerebral palsy.
    Shuman BR; Goudriaan M; Desloovere K; Schwartz MH; Steele KM
    J Neuroeng Rehabil; 2019 Mar; 16(1):46. PubMed ID: 30925882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurorehabilitation with versus without resistance training after botulinum toxin treatment in children with cerebral palsy: a randomized pilot study.
    Bandholm T; Jensen BR; Nielsen LM; Rasmussen H; Bencke J; Curtis D; Pedersen SA; Sonne-Holm S
    NeuroRehabilitation; 2012; 30(4):277-86. PubMed ID: 22672941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ankle Exoskeleton Assistance Can Improve Over-Ground Walking Economy in Individuals With Cerebral Palsy.
    Orekhov G; Fang Y; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):461-467. PubMed ID: 31940542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative evaluation for spasticity of calf muscle after botulinum toxin injection in patients with cerebral palsy: a pilot study.
    Lin YC; Lin IL; Chou TF; Lee HM
    J Neuroeng Rehabil; 2016 Mar; 13():25. PubMed ID: 26969526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Neuromuscular Engagement to Improve Gait Training with a Robotic Ankle Exoskeleton.
    Harshe K; Williams JR; Hocking TD; Lerner ZF
    IEEE Robot Autom Lett; 2023 Aug; 8(8):5055-5060. PubMed ID: 38283263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.