BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 34333208)

  • 41. Deep Learning to Classify Radiology Free-Text Reports.
    Chen MC; Ball RL; Yang L; Moradzadeh N; Chapman BE; Larson DB; Langlotz CP; Amrhein TJ; Lungren MP
    Radiology; 2018 Mar; 286(3):845-852. PubMed ID: 29135365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Natural Language Processing and Machine Learning Approach to Identification of Incidental Radiology Findings in Trauma Patients Discharged from the Emergency Department.
    Evans CS; Dorris HD; Kane MT; Mervak B; Brice JH; Gray B; Moore C
    Ann Emerg Med; 2023 Mar; 81(3):262-269. PubMed ID: 36328850
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of artificial intelligence to identify data elements for The Japanese Orthopaedic Association National Registry from operative records.
    Kita K; Uemura K; Takao M; Fujimori T; Tamura K; Nakamura N; Wakabayashi G; Kurakami H; Suzuki Y; Wataya T; Nishigaki D; Okada S; Tomiyama N; Kido S
    J Orthop Sci; 2023 Nov; 28(6):1392-1399. PubMed ID: 36163118
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Language model-based labeling of German thoracic radiology reports.
    Wollek A; Haitzer P; Sedlmeyr T; Hyska S; Rueckel J; Sabel BO; Ingrisch M; Lasser T
    Rofo; 2024 Apr; ():. PubMed ID: 38663428
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Clinical Concept-Based Radiology Reports Classification Pipeline for Lung Carcinoma.
    Mithun S; Jha AK; Sherkhane UB; Jaiswar V; Purandare NC; Dekker A; Puts S; Bermejo I; Rangarajan V; Zegers CML; Wee L
    J Digit Imaging; 2023 Jun; 36(3):812-826. PubMed ID: 36788196
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automated labelling of radiology reports using natural language processing: Comparison of traditional and newer methods.
    Chng SY; Tern PJW; Kan MRX; Cheng LTE
    Health Care Sci; 2023 Apr; 2(2):120-128. PubMed ID: 38938764
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Natural language processing of radiology reports for identification of skeletal site-specific fractures.
    Wang Y; Mehrabi S; Sohn S; Atkinson EJ; Amin S; Liu H
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 3):73. PubMed ID: 30943952
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integrating Natural Language Processing and Machine Learning Algorithms to Categorize Oncologic Response in Radiology Reports.
    Chen PH; Zafar H; Galperin-Aizenberg M; Cook T
    J Digit Imaging; 2018 Apr; 31(2):178-184. PubMed ID: 29079959
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of Machine Learning to Identify Follow-Up Recommendations in Radiology Reports.
    Carrodeguas E; Lacson R; Swanson W; Khorasani R
    J Am Coll Radiol; 2019 Mar; 16(3):336-343. PubMed ID: 30600162
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Natural Language Processing and Machine Learning Methods to Characterize Unstructured Patient-Reported Outcomes: Validation Study.
    Lu Z; Sim JA; Wang JX; Forrest CB; Krull KR; Srivastava D; Hudson MM; Robison LL; Baker JN; Huang IC
    J Med Internet Res; 2021 Nov; 23(11):e26777. PubMed ID: 34730546
    [TBL] [Abstract][Full Text] [Related]  

  • 51. BERT-Kcr: prediction of lysine crotonylation sites by a transfer learning method with pre-trained BERT models.
    Qiao Y; Zhu X; Gong H
    Bioinformatics; 2022 Jan; 38(3):648-654. PubMed ID: 34643684
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improving case duration accuracy of orthopedic surgery using bidirectional encoder representations from Transformers (BERT) on Radiology Reports.
    Zhong W; Yao PY; Boppana SH; Pacheco FV; Alexander BS; Simpson S; Gabriel RA
    J Clin Monit Comput; 2024 Feb; 38(1):221-228. PubMed ID: 37695448
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Natural Language Processing of Radiology Reports in Patients With Hepatocellular Carcinoma to Predict Radiology Resource Utilization.
    Brown AD; Kachura JR
    J Am Coll Radiol; 2019 Jun; 16(6):840-844. PubMed ID: 30833164
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automatic Diagnosis of Spinal Disorders on Radiographic Images: Leveraging Existing Unstructured Datasets With Natural Language Processing.
    Galbusera F; Cina A; Bassani T; Panico M; Sconfienza LM
    Global Spine J; 2023 Jun; 13(5):1257-1266. PubMed ID: 34219477
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Classification of Oncology Treatment Responses from French Radiology Reports with Supervised Machine Learning.
    Goldman JP; Mottin L; Zaghir J; Keszthelyi D; Lokaj B; Turbé H; Gobeil J; Ruch P; Ehrsam J; Lovis C
    Stud Health Technol Inform; 2022 May; 294():849-853. PubMed ID: 35612224
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rule-Based Natural Language Processing Pipeline to Detect Medication-Related Named Entities: Insights for Transfer Learning.
    Wong ZSY; Waters N; ; Kuo NI; Liu J
    Stud Health Technol Inform; 2024 Jan; 310():584-588. PubMed ID: 38269876
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Text classification models for the automatic detection of nonmedical prescription medication use from social media.
    Al-Garadi MA; Yang YC; Cai H; Ruan Y; O'Connor K; Graciela GH; Perrone J; Sarker A
    BMC Med Inform Decis Mak; 2021 Jan; 21(1):27. PubMed ID: 33499852
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The natural language processing of radiology requests and reports of chest imaging: Comparing five transformer models' multilabel classification and a proof-of-concept study.
    Olthof AW; van Ooijen PM; Cornelissen LJ
    Health Informatics J; 2022; 28(4):14604582221131198. PubMed ID: 36227062
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Natural language processing with deep learning for medical adverse event detection from free-text medical narratives: A case study of detecting total hip replacement dislocation.
    Borjali A; Magnéli M; Shin D; Malchau H; Muratoglu OK; Varadarajan KM
    Comput Biol Med; 2021 Feb; 129():104140. PubMed ID: 33278631
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Machine learning and natural language processing methods to identify ischemic stroke, acuity and location from radiology reports.
    Ong CJ; Orfanoudaki A; Zhang R; Caprasse FPM; Hutch M; Ma L; Fard D; Balogun O; Miller MI; Minnig M; Saglam H; Prescott B; Greer DM; Smirnakis S; Bertsimas D
    PLoS One; 2020; 15(6):e0234908. PubMed ID: 32559211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.