BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34333341)

  • 1. Advances in SUMO-based regulation of homologous recombination.
    Dhingra N; Zhao X
    Curr Opin Genet Dev; 2021 Dec; 71():114-119. PubMed ID: 34333341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intricate SUMO-based control of the homologous recombination machinery.
    Dhingra N; Zhao X
    Genes Dev; 2019 Oct; 33(19-20):1346-1354. PubMed ID: 31575678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The deSUMOylase SENP2 coordinates homologous recombination and nonhomologous end joining by independent mechanisms.
    Garvin AJ; Walker AK; Densham RM; Chauhan AS; Stone HR; Mackay HL; Jamshad M; Starowicz K; Daza-Martin M; Ronson GE; Lanz AJ; Beesley JF; Morris JR
    Genes Dev; 2019 Mar; 33(5-6):333-347. PubMed ID: 30796017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Yin and Yang of the MMS21-SMC5/6 SUMO ligase complex in homologous recombination.
    Potts PR
    DNA Repair (Amst); 2009 Apr; 8(4):499-506. PubMed ID: 19217832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Damage Tolerance Pathway Choice Through Uls1 Modulation of Srs2 SUMOylation in
    Kramarz K; Mucha S; Litwin I; Barg-Wojas A; Wysocki R; Dziadkowiec D
    Genetics; 2017 May; 206(1):513-525. PubMed ID: 28341648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage.
    Shima H; Suzuki H; Sun J; Kono K; Shi L; Kinomura A; Horikoshi Y; Ikura T; Ikura M; Kanaar R; Igarashi K; Saitoh H; Kurumizaka H; Tashiro S
    J Cell Sci; 2013 Nov; 126(Pt 22):5284-92. PubMed ID: 24046452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of the SUMO-related enzymes, PIAS1, PIAS4, and RNF4, in DNA double-strand break repair by homologous recombination.
    Han MM; Hirakawa M; Yamauchi M; Matsuda N
    Biochem Biophys Res Commun; 2022 Feb; 591():95-101. PubMed ID: 35007836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
    Murmann-Konda T; Soni A; Stuschke M; Iliakis G
    Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations of homologous recombination pathways and their regulation.
    Daley JM; Kwon Y; Niu H; Sung P
    Yale J Biol Med; 2013 Dec; 86(4):453-61. PubMed ID: 24348209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA End Resection: Mechanism and Control.
    Cejka P; Symington LS
    Annu Rev Genet; 2021 Nov; 55():285-307. PubMed ID: 34813349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homologous recombination is a primary pathway to repair DNA double-strand breaks generated during DNA rereplication.
    Truong LN; Li Y; Sun E; Ang K; Hwang PY; Wu X
    J Biol Chem; 2014 Oct; 289(42):28910-23. PubMed ID: 25160628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural mechanisms underlying signaling in the cellular response to DNA double strand breaks.
    Mermershtain I; Glover JN
    Mutat Res; 2013 Oct; 750(1-2):15-22. PubMed ID: 23896398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATM controls the extent of DNA end resection by eliciting sequential posttranslational modifications of CtIP.
    Han J; Wan L; Jiang G; Cao L; Xia F; Tian T; Zhu X; Wu M; Huen MSY; Wang Y; Liu T; Huang J
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33723063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism and significance of chromosome damage repair by homologous recombination.
    Kawale AS; Sung P
    Essays Biochem; 2020 Oct; 64(5):779-790. PubMed ID: 32756864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One end to rule them all: Non-homologous end-joining and homologous recombination at DNA double-strand breaks.
    Ensminger M; Löbrich M
    Br J Radiol; 2020 Nov; 93(1115):20191054. PubMed ID: 32105514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SUMO Wrestles with Recombination.
    Altmannová V; Kolesár P; Krejčí L
    Biomolecules; 2012 Jul; 2(3):350-75. PubMed ID: 24970142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of mitotic recombination: insights from C. elegans.
    Belan O; Anand R; Boulton SJ
    Curr Opin Genet Dev; 2021 Dec; 71():10-18. PubMed ID: 34186335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MND1 enables homologous recombination in somatic cells primarily outside the context of replication.
    Koob L; Friskes A; van Bergen L; Feringa FM; van den Broek B; Koeleman ES; van Beek E; Schubert M; Blomen VA; Brummelkamp TR; Krenning L; Medema RH
    Mol Oncol; 2023 Jul; 17(7):1192-1211. PubMed ID: 37195379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of homologous recombination in radiation-induced double-strand break repair.
    Jeggo PA; Geuting V; Löbrich M
    Radiother Oncol; 2011 Oct; 101(1):7-12. PubMed ID: 21737170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA end resection requires constitutive sumoylation of CtIP by CBX4.
    Soria-Bretones I; Cepeda-García C; Checa-Rodriguez C; Heyer V; Reina-San-Martin B; Soutoglou E; Huertas P
    Nat Commun; 2017 Jul; 8(1):113. PubMed ID: 28740167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.