These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 34333349)
1. Solid-state anaerobic digestion of sugarcane bagasse at different solid concentrations: Impact of bio augmented cellulolytic bacteria on methane yield and insights on microbial diversity. Arelli V; Mamindlapelli NK; Juntupally S; Begum S; Anupoju GR Bioresour Technol; 2021 Nov; 340():125675. PubMed ID: 34333349 [TBL] [Abstract][Full Text] [Related]
2. Metataxonomic characterization of an autochthonous and allochthonous microbial consortium involved in a two-stage anaerobic batch reactor applied to hydrogen and methane production from sugarcane bagasse. Silva Rabelo CAB; Camargo FP; Sakamoto IK; Varesche MBA Enzyme Microb Technol; 2023 Jan; 162():110119. PubMed ID: 36115274 [TBL] [Abstract][Full Text] [Related]
3. Anaerobic digestion of hemicellulose hydrolysate produced after hydrothermal pretreatment of sugarcane bagasse in UASB reactor. Ribeiro FR; Passos F; Gurgel LVA; Baêta BEL; de Aquino SF Sci Total Environ; 2017 Apr; 584-585():1108-1113. PubMed ID: 28162762 [TBL] [Abstract][Full Text] [Related]
4. Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw. Ozbayram EG; Kleinsteuber S; Nikolausz M; Ince B; Ince O Anaerobe; 2017 Aug; 46():122-130. PubMed ID: 28323135 [TBL] [Abstract][Full Text] [Related]
5. The biomethanation of cow manure in a continuous anaerobic digester can be boosted via a bioaugmentation culture containing Bathyarchaeota. Li Y; Zhao J; Achinas S; Zhang Z; Krooneman J; Euverink GJW Sci Total Environ; 2020 Nov; 745():141042. PubMed ID: 32736108 [TBL] [Abstract][Full Text] [Related]
6. Corrigendum to "Solid-state anaerobic digestion of sugarcane bagasse at different solid concentrations: Impact of bio augmented cellulolytic bacteria on methane yield and insights on microbial diversity" [Bioresour. Technol. 340 (2021) 125675]. Arelli V; Mamindlapelli NK; Juntupally S; Begum S; Anupoju GR Bioresour Technol; 2021 Dec; 341():125849. PubMed ID: 34479142 [No Abstract] [Full Text] [Related]
7. Enhanced anaerobic digestion of waste-activated sludge via bioaugmentation strategy-Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) analysis through hydrolytic enzymes and possible linkage to system performance. Cayetano RDA; Park J; Kim GB; Jung JH; Kim SH Bioresour Technol; 2021 Jul; 332():125014. PubMed ID: 33839513 [TBL] [Abstract][Full Text] [Related]
8. Cellulose accessibility and microbial community in solid state anaerobic digestion of rape straw. Tian JH; Pourcher AM; Bureau C; Peu P Bioresour Technol; 2017 Jan; 223():192-201. PubMed ID: 27792929 [TBL] [Abstract][Full Text] [Related]
9. Anaerobic digestion of sugarcane bagasse for biogas production and digestate valorization. Agarwal NK; Kumar M; Ghosh P; Kumar SS; Singh L; Vijay VK; Kumar V Chemosphere; 2022 May; 295():133893. PubMed ID: 35134407 [TBL] [Abstract][Full Text] [Related]
10. Solid state anaerobic digestion of food waste and sewage sludge: Impact of mixing ratios and temperature on microbial diversity, reactor stability and methane yield. Arelli V; Mamindlapelli NK; Begum S; Juntupally S; Anupoju GR Sci Total Environ; 2021 Nov; 793():148586. PubMed ID: 34328990 [TBL] [Abstract][Full Text] [Related]
11. Effects of pretreatment methods on biomethane production kinetics and microbial community by solid state anaerobic digestion of sugarcane trash. Ketsub N; Whatmore P; Abbasabadi M; Doherty WOS; Kaparaju P; O'Hara IM; Zhang Z Bioresour Technol; 2022 May; 352():127112. PubMed ID: 35381335 [TBL] [Abstract][Full Text] [Related]
12. Effect of inoculum composition on the microbial community involved in the anaerobic digestion of sugarcane bagasse. Pereira AR; Assis NV; Paranhos AGO; Lima DRS; Baeta BEL; Aquino SF; Silva SQ Environ Technol; 2024 Apr; 45(11):2205-2217. PubMed ID: 36632771 [TBL] [Abstract][Full Text] [Related]
13. Incorporating anaerobic co-digestion of steam exploded or ammonia fiber expansion pretreated sugarcane residues with manure into a sugarcane-based bioenergy-livestock nexus. Mokomele T; da Costa Sousa L; Balan V; van Rensburg E; Dale BE; Görgens JF Bioresour Technol; 2019 Jan; 272():326-336. PubMed ID: 30384207 [TBL] [Abstract][Full Text] [Related]
14. Biogas production by anaerobic co-digestion of sugarcane biorefinery byproducts: Comparative analyses of performance and microbial community in novel single-and two-stage systems. Fernando Herrera Adarme O; Eduardo Lobo Baêta B; Cardoso Torres M; Camilo Otalora Tapiero F; Vinicius Alves Gurgel L; de Queiroz Silva S; Francisco de Aquino S Bioresour Technol; 2022 Jun; 354():127185. PubMed ID: 35439561 [TBL] [Abstract][Full Text] [Related]
15. Culture-independent phylogenetic analysis of the microbial community in industrial sugarcane bagasse feedstock piles. Rattanachomsri U; Kanokratana P; Eurwilaichitr L; Igarashi Y; Champreda V Biosci Biotechnol Biochem; 2011; 75(2):232-9. PubMed ID: 21307603 [TBL] [Abstract][Full Text] [Related]
16. Microbial community dynamics during anaerobic co-digestion of corn stover and swine manure at different solid content, carbon to nitrogen ratio and effluent volumetric percentages. Joseph G; Zhang B; Harrison SH; Graves JL; Thomas MD; Panchagavi R; Ewunkem JAJ; Wang L J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(9):1111-1124. PubMed ID: 32460612 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of anaerobic co-digestion of dairy manure with food wastes via bio-methane potential assay and CSTR reactor. Ye Y; Zamalloa C; Lin H; Yan M; Schmidt D; Hu B J Environ Sci Health B; 2015; 50(3):217-27. PubMed ID: 25602155 [TBL] [Abstract][Full Text] [Related]
18. The synergistic effect of rumen cellulolytic bacteria and activated carbon on thermophilic digestion of cornstalk. Xie Z; Meng X; Ding H; Cao Q; Chen Y; Liu X; Li D Bioresour Technol; 2021 Oct; 338():125566. PubMed ID: 34298332 [TBL] [Abstract][Full Text] [Related]
19. Improving anaerobic digestion of a cellulosic waste via routine bioaugmentation with cellulolytic microorganisms. Martin-Ryals A; Schideman L; Li P; Wilkinson H; Wagner R Bioresour Technol; 2015; 189():62-70. PubMed ID: 25864032 [TBL] [Abstract][Full Text] [Related]
20. Thermophilic Alkaline Fermentation Followed by Mesophilic Anaerobic Digestion for Efficient Hydrogen and Methane Production from Waste-Activated Sludge: Dynamics of Bacterial Pathogens as Revealed by the Combination of Metagenomic and Quantitative PCR Analyses. Wan J; Jing Y; Rao Y; Zhang S; Luo G Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]