These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34333377)

  • 1. A playbook for developing disease-resistant crops through immune receptor identification and transfer.
    Schultink A; Steinbrenner AD
    Curr Opin Plant Biol; 2021 Aug; 62():102089. PubMed ID: 34333377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops.
    Silva MS; Arraes FBM; Campos MA; Grossi-de-Sa M; Fernandez D; Cândido ES; Cardoso MH; Franco OL; Grossi-de-Sa MF
    Plant Sci; 2018 May; 270():72-84. PubMed ID: 29576088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunity and starvation: new opportunities to elevate disease resistance in crops.
    Oliva R; Quibod IL
    Curr Opin Plant Biol; 2017 Aug; 38():84-91. PubMed ID: 28505583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. microRNA-mediated R gene regulation: molecular scabbards for double-edged swords.
    Deng Y; Liu M; Li X; Li F
    Sci China Life Sci; 2018 Feb; 61(2):138-147. PubMed ID: 29327329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding.
    Li W; Deng Y; Ning Y; He Z; Wang GL
    Annu Rev Plant Biol; 2020 Apr; 71():575-603. PubMed ID: 32197052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoalexin transgenics in crop protection--fairy tale with a happy end?
    Großkinsky DK; van der Graaff E; Roitsch T
    Plant Sci; 2012 Oct; 195():54-70. PubMed ID: 22920999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionarily conserved plant genes responsive to root-knot nematodes identified by comparative genomics.
    Mota APZ; Fernandez D; Arraes FBM; Petitot AS; de Melo BP; de Sa MEL; Grynberg P; Saraiva MAP; Guimaraes PM; Brasileiro ACM; Albuquerque EVS; Danchin EGJ; Grossi-de-Sa MF
    Mol Genet Genomics; 2020 Jul; 295(4):1063-1078. PubMed ID: 32333171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptors and Signaling Pathways for Recognition of Bacteria in Livestock and Crops: Prospects for Beneficial Microbes in Healthy Growth Strategies.
    Villena J; Kitazawa H; Van Wees SCM; Pieterse CMJ; Takahashi H
    Front Immunol; 2018; 9():2223. PubMed ID: 30319660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and molecular basis of nonhost disease resistance: complex, yes; silver bullet, no.
    Fan J; Doerner P
    Curr Opin Plant Biol; 2012 Aug; 15(4):400-6. PubMed ID: 22445191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genes involved in nonhost disease resistance as a key to engineer durable resistance in crops.
    Fonseca JP; Mysore KS
    Plant Sci; 2019 Feb; 279():108-116. PubMed ID: 30709487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies.
    Mores A; Borrelli GM; Laidò G; Petruzzino G; Pecchioni N; Amoroso LGM; Desiderio F; Mazzucotelli E; Mastrangelo AM; Marone D
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34063853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pivoting the plant immune system from dissection to deployment.
    Dangl JL; Horvath DM; Staskawicz BJ
    Science; 2013 Aug; 341(6147):746-51. PubMed ID: 23950531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epidemiology and disease-control under gene-for-gene plant-pathogen interaction.
    Ohtsuki A; Sasaki A
    J Theor Biol; 2006 Feb; 238(4):780-94. PubMed ID: 16085107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of recent technological advances to future resistance breeding.
    Sánchez-Martín J; Keller B
    Theor Appl Genet; 2019 Mar; 132(3):713-732. PubMed ID: 30756126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What Do We Know About NOD-Like Receptors in Plant Immunity?
    Zhang X; Dodds PN; Bernoux M
    Annu Rev Phytopathol; 2017 Aug; 55():205-229. PubMed ID: 28637398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance.
    Boutrot F; Zipfel C
    Annu Rev Phytopathol; 2017 Aug; 55():257-286. PubMed ID: 28617654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two unequally redundant "helper" immune receptor families mediate Arabidopsis thaliana intracellular "sensor" immune receptor functions.
    Saile SC; Jacob P; Castel B; Jubic LM; Salas-Gonzáles I; Bäcker M; Jones JDG; Dangl JL; El Kasmi F
    PLoS Biol; 2020 Sep; 18(9):e3000783. PubMed ID: 32925907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting pathogens' tricks of the trade for engineering of plant disease resistance: challenges and opportunities.
    Grant MR; Kazan K; Manners JM
    Microb Biotechnol; 2013 May; 6(3):212-22. PubMed ID: 23279915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 to generate plant immunity against pathogen.
    Zaynab M; Sharif Y; Fatima M; Afzal MZ; Aslam MM; Raza MF; Anwar M; Raza MA; Sajjad N; Yang X; Li S
    Microb Pathog; 2020 Apr; 141():103996. PubMed ID: 31988004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Effector-Triggered Immunity in Plants: New Pieces in the Puzzle Create a Different Paradigm.
    Nguyen QM; Iswanto ABB; Son GH; Kim SH
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.