These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34333519)

  • 1. MFCIS: an automatic leaf-based identification pipeline for plant cultivars using deep learning and persistent homology.
    Zhang Y; Peng J; Yuan X; Zhang L; Zhu D; Hong P; Wang J; Liu Q; Liu W
    Hortic Res; 2021 Aug; 8(1):172. PubMed ID: 34333519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning for Plant Species Classification Using Leaf Vein Morphometric.
    Tan JW; Chang SW; Abdul-Kareem S; Yap HJ; Yong KT
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):82-90. PubMed ID: 29994129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant-CNN-ViT: Plant Classification with Ensemble of Convolutional Neural Networks and Vision Transformer.
    Lee CP; Lim KM; Song YX; Alqahtani A
    Plants (Basel); 2023 Jul; 12(14):. PubMed ID: 37514256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GENETIC DIVERSITY OF SOME IRANIAN SWEET CHERRY (PRUNUS AVIUM) CULTIVARS USING MICROSATELLITE MARKERS AND MORPHOLOGICAL TRAITS.
    Farsad A; Esna-Ashari M
    Tsitol Genet; 2016; 50(1):12-25. PubMed ID: 27266181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Grapevine Cultivar Identification via Leaf Imaging and Deep Convolutional Neural Networks: A Proof-of-Concept Study Employing Primary Iranian Varieties.
    Nasiri A; Taheri-Garavand A; Fanourakis D; Zhang YD; Nikoloudakis N
    Plants (Basel); 2021 Aug; 10(8):. PubMed ID: 34451673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Learning-Based Method for Automatic Assessment of Stomatal Index in Wheat Microscopic Images of Leaf Epidermis.
    Zhu C; Hu Y; Mao H; Li S; Li F; Zhao C; Luo L; Liu W; Yuan X
    Front Plant Sci; 2021; 12():716784. PubMed ID: 34539710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated and accurate segmentation of leaf venation networks via deep learning.
    Xu H; Blonder B; Jodra M; Malhi Y; Fricker M
    New Phytol; 2021 Jan; 229(1):631-648. PubMed ID: 32964424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Method of Automatic Plant Species Identification Using Sparse Representation of Leaf Tooth Features.
    Jin T; Hou X; Li P; Zhou F
    PLoS One; 2015; 10(10):e0139482. PubMed ID: 26440281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acquiring and preprocessing leaf images for automated plant identification: understanding the tradeoff between effort and information gain.
    Rzanny M; Seeland M; Wäldchen J; Mäder P
    Plant Methods; 2017; 13():97. PubMed ID: 29151843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice leaf diseases prediction using deep neural networks with transfer learning.
    N K; Narasimha Prasad LV; Pavan Kumar CS; Subedi B; Abraha HB; V E S
    Environ Res; 2021 Jul; 198():111275. PubMed ID: 33989629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convolutional Neural Network for Automatic Identification of Plant Diseases with Limited Data.
    Afifi A; Alhumam A; Abdelwahab A
    Plants (Basel); 2020 Dec; 10(1):. PubMed ID: 33374398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features.
    Qaiser T; Tsang YW; Taniyama D; Sakamoto N; Nakane K; Epstein D; Rajpoot N
    Med Image Anal; 2019 Jul; 55():1-14. PubMed ID: 30991188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and identification of tea leaf diseases based on AX-RetinaNet.
    Bao W; Fan T; Hu G; Liang D; Li H
    Sci Rep; 2022 Feb; 12(1):2183. PubMed ID: 35140287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic monitoring of lettuce fresh weight by multi-modal fusion based deep learning.
    Lin Z; Fu R; Ren G; Zhong R; Ying Y; Lin T
    Front Plant Sci; 2022; 13():980581. PubMed ID: 36092436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Down-regulation of photosynthesis following girdling, but contrasting effects on fruit set and retention, in two sweet cherry cultivars.
    Quentin AG; Close DC; Hennen LM; Pinkard EA
    Plant Physiol Biochem; 2013 Dec; 73():359-67. PubMed ID: 24189522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep ensemble learning for automatic medicinal leaf identification.
    Sachar S; Kumar A
    Int J Inf Technol; 2022; 14(6):3089-3097. PubMed ID: 35975198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ICPTC: Iranian commercial pistachio tree cultivars standard dataset.
    Heidary-Sharifabad A; Zarchi MS; Zarei G
    Data Brief; 2021 Oct; 38():107348. PubMed ID: 34522735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential Phenolic Compounds and Hormone Accumulation Patterns between Early- and Mid-Maturing Sweet Cherry (
    Ponce C; Kuhn N; Arellano M; Time A; Multari S; Martens S; Carrera E; Sagredo B; Donoso JM; Meisel LA
    J Agric Food Chem; 2021 Aug; 69(31):8850-8860. PubMed ID: 34339217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning Techniques for Grape Plant Species Identification in Natural Images.
    Pereira CS; Morais R; Reis MJCS
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31703313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First Report of Cherry mottle leaf virus Infecting Cherry in China.
    Ma YX; Li JJ; Li GF; Zhu SF
    Plant Dis; 2014 Aug; 98(8):1161. PubMed ID: 30708833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.