BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34333970)

  • 1. Defect Passivation Effect of Chemical Groups on Perovskite Solar Cells.
    Li X; Sheng W; Duan X; Lin Z; Yang J; Tan L; Chen Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34161-34170. PubMed ID: 34333970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Efficiency and Stability of MAPbI
    Li M; Yue Z; Ye Z; Li H; Luo H; Yang QD; Zhou Y; Huo Y; Cheng Y
    Small; 2024 Jun; 20(25):e2311400. PubMed ID: 38196055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the Photovoltage of Blade-Coated MAPbI
    Abbas M; Cai B; Hu J; Guo F; Mai Y; Yuan XC
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46566-46576. PubMed ID: 34570471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Mechanism between Antisolvent Dripping and Additive Doping Strategies on the Passivation Effects in Perovskite Solar Cells.
    Long J; Sheng W; Dai R; Huang Z; Yang J; Zhang J; Li X; Tan L; Chen Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56151-56160. PubMed ID: 33263982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying the functional groups effect on passivating perovskite solar cells.
    Xie J; Yan K; Zhu H; Li G; Wang H; Zhu H; Hang P; Zhao S; Guo W; Ye D; Shao L; Guan X; Ngai T; Yu X; Xu J
    Sci Bull (Beijing); 2020 Oct; 65(20):1726-1734. PubMed ID: 36659245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multifunctional Fluorinated Polymer Enabling Efficient MAPbI
    Luo M; Zong X; Zhang W; Hua M; Sun Z; Liang M; Xue S
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31285-31295. PubMed ID: 35771675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passivation of the grain boundaries of CH
    Guo Q; Yuan F; Zhang B; Zhou S; Zhang J; Bai Y; Fan L; Hayat T; Alsaedi A; Tan Z
    Nanoscale; 2018 Dec; 11(1):115-124. PubMed ID: 30525161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots.
    Ma Y; Zhang H; Zhang Y; Hu R; Jiang M; Zhang R; Lv H; Tian J; Chu L; Zhang J; Xue Q; Yip HL; Xia R; Li X; Huang W
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3044-3052. PubMed ID: 30585492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic Effect of Defect Passivation and Crystallization Control Enabled by Bifunctional Additives for Carbon-Based Mesoscopic Perovskite Solar Cells.
    Wang D; Zhang Z; Liu J; Zhang Y; Chen K; She B; Liu B; Huang Y; Xiong J; Zhang J
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45435-45445. PubMed ID: 34542284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomaterial Improves the Stability of Perovskite Solar Cells by Passivating Defects and Inhibiting Ion Migration.
    Liu Z; Su Z; Yu B; Sun Y; Zhang J; Yu H
    ACS Appl Mater Interfaces; 2024 Jun; 16(24):31218-31227. PubMed ID: 38842482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective Interface Defect Passivation via Employing 1-Methylbenzimidazole for Highly Efficient and Stable Perovskite Solar Cells.
    Zheng H; Liu G; Wu W; Xu H; Pan X
    ChemSusChem; 2021 Aug; 14(15):3147-3154. PubMed ID: 34132063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual Functions of Crystallization Control and Defect Passivation Enabled by an Ionic Compensation Strategy for Stable and High-Efficient Perovskite Solar Cells.
    Gao Y; Wu Y; Liu Y; Chen C; Bai X; Yang L; Shi Z; Yu WW; Dai Q; Zhang Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3631-3641. PubMed ID: 31880905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Selection of the Lewis Base Molecules Targeted for Lead-Based Defects of Perovskite Solar Cells: The Synergetic Co-passivation of Carbonyl and Carboxyl Groups.
    Wang P; Liu J; Shang W; Xu T; Wang M; Shi Y; Cai R; Bian J
    J Phys Chem Lett; 2023 Jan; 14(3):653-662. PubMed ID: 36637234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Surface Defect Passivation of Ionic Liquids for Efficient and Stable MAPbI
    Duan S; Sun Q; Liu G; Deng J; Meng X; Shen B; Hu D; Kang B; Silva SRP
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):46483-46492. PubMed ID: 37748040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect Passivation by a Multifunctional Phosphate Additive toward Improvements of Efficiency and Stability of Perovskite Solar Cells.
    Zhang WH; Chen L; Zou ZP; Nan ZA; Shi JL; Luo QP; Hui Y; Li KX; Wang YJ; Zhou JZ; Yan JW; Mao BW
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):31911-31919. PubMed ID: 35796315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SnO
    Li Y; Yao D; Tang Z; Jiang B; Li C; Gao Y; Tian N; Wang J; Zheng G; Long F
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9388-9399. PubMed ID: 38324460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chirality-Induced Crystallization and Defect Passivation of Perovskites: Toward High-Performance Solar Cells.
    Wu W; Chen Q; Cao J; Fu J; Zhang Z; Chen L; Rui D; Zhang J; Zhou Y; Song B
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16340-16350. PubMed ID: 38511525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable Perovskite Solar Cells with Bulk-Mixed Electron Transport Layer by Multifunctional Defect Passivation.
    Ma N; Jiang J; Wang G; Wang D; Zhang Y; Wang Y; Wang Y; Ji Y; Wei W; Shen L
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44401-44408. PubMed ID: 34515469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial Dipole poly(2-ethyl-2-oxazoline) Modification Triggers Simultaneous Band Alignment and Passivation for Air-Stable Perovskite Solar Cells.
    Xi H; Song Z; Guo Y; Zhu W; Ding L; Zhu W; Chen D; Zhang C
    Polymers (Basel); 2022 Jul; 14(13):. PubMed ID: 35808795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taurine as a powerful passivator of perovskite layer for efficient and stable perovskite solar cells.
    Hou X; Yuan Z; Liu J; Ma H; Yu F
    RSC Adv; 2023 Jun; 13(25):16872-16879. PubMed ID: 37283868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.