BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34334194)

  • 1. Expression of specific signaling components related to muscle protein turnover and of branched-chain amino acid catabolic enzymes in muscle and adipose tissue of preterm and term calves.
    Sadri H; Ghaffari MH; Steinhoff-Wagner J; Görs S; Hammon HM; Sauerwein H
    J Dairy Sci; 2021 Oct; 104(10):11291-11305. PubMed ID: 34334194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mammalian target of rapamycin signaling and ubiquitin proteasome-related gene expression in 3 different skeletal muscles of colostrum- versus formula-fed calves.
    Sadri H; Steinhoff-Wagner J; Hammon HM; Bruckmaier RM; Görs S; Sauerwein H
    J Dairy Sci; 2017 Nov; 100(11):9428-9441. PubMed ID: 28918148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short communication: Colostrum versus formula: Effects on mRNA expression of genes related to branched-chain amino acid metabolism in neonatal dairy calves.
    Ghaffari MH; Sadri H; Hammon HM; Steinhoff-Wagner J; Henschel N; Sauerwein H
    J Dairy Sci; 2020 Oct; 103(10):9656-9666. PubMed ID: 32828514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteasome activity and expression of mammalian target of rapamycin signaling factors in skeletal muscle of dairy cows supplemented with conjugated linoleic acids during early lactation.
    Yang Y; Sadri H; Prehn C; Adamski J; Rehage J; Dänicke S; von Soosten D; Metges CC; Ghaffari MH; Sauerwein H
    J Dairy Sci; 2020 Mar; 103(3):2829-2846. PubMed ID: 31954574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Branched-chain amino acids: Abundance of their transporters and metabolizing enzymes in adipose tissue, skeletal muscle, and liver of dairy cows at high or normal body condition.
    Webb LA; Sadri H; Schuh K; Egert S; Stehle P; Meyer I; Koch C; Dusel G; Sauerwein H
    J Dairy Sci; 2020 Mar; 103(3):2847-2863. PubMed ID: 31928756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in tissue abundance and activity of enzymes related to branched-chain amino acid catabolism in dairy cows during early lactation.
    Webb LA; Sadri H; von Soosten D; Dänicke S; Egert S; Stehle P; Sauerwein H
    J Dairy Sci; 2019 Apr; 102(4):3556-3568. PubMed ID: 30712942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mammalian target of rapamycin signaling and ubiquitin-proteasome-related gene expression in skeletal muscle of dairy cows with high or normal body condition score around calving.
    Ghaffari MH; Schuh K; Dusel G; Frieten D; Koch C; Prehn C; Adamski J; Sauerwein H; Sadri H
    J Dairy Sci; 2019 Dec; 102(12):11544-11560. PubMed ID: 31587900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maturation of endogenous glucose production in preterm and term calves.
    Steinhoff-Wagner J; Görs S; Junghans P; Bruckmaier RM; Kanitz E; Metges CC; Hammon HM
    J Dairy Sci; 2011 Oct; 94(10):5111-23. PubMed ID: 21943762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatic glucocorticoid and α1- and β2-adrenergic receptors in calves change during neonatal maturation and are related to energy regulation.
    Schäff CT; Rohrbeck D; Steinhoff-Wagner J; Kanitz E; Sauerwein H; Bruckmaier RM; Hammon HM
    J Dairy Sci; 2015 Feb; 98(2):1046-56. PubMed ID: 25497806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short communication: Plasma concentration and tissue mRNA expression of haptoglobin in neonatal calves.
    Sadri H; Getachew B; Ghaffari MH; Hammon HM; Steinhoff-Wagner J; Sauerwein H
    J Dairy Sci; 2020 Jul; 103(7):6684-6691. PubMed ID: 32331878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose supplementation stimulates peripheral branched-chain amino acid catabolism in lactating dairy cows during essential amino acid infusions.
    Nichols K; Kim JJM; Carson M; Metcalf JA; Cant JP; Doelman J
    J Dairy Sci; 2016 Feb; 99(2):1145-1160. PubMed ID: 26627857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of colostrum versus formula feeding on hepatic glucocorticoid and α₁- and β₂-adrenergic receptors in neonatal calves and their effect on glucose and lipid metabolism.
    Schäff CT; Rohrbeck D; Steinhoff-Wagner J; Kanitz E; Sauerwein H; Bruckmaier RM; Hammon HM
    J Dairy Sci; 2014 Oct; 97(10):6344-57. PubMed ID: 25108854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of slow-release urea and rumen-protected methionine and histidine on mammalian target of rapamycin (mTOR) signaling and ubiquitin proteasome-related gene expression in skeletal muscle of dairy cows.
    Sadri H; Giallongo F; Hristov AN; Werner J; Lang CH; Parys C; Saremi B; Sauerwein H
    J Dairy Sci; 2016 Aug; 99(8):6702-6713. PubMed ID: 27179859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogenic Changes of Villus Growth, Lactase Activity, and Intestinal Glucose Transporters in Preterm and Term Born Calves with or without Prolonged Colostrum Feeding.
    Steinhoff-Wagner J; Schönhusen U; Zitnan R; Hudakova M; Pfannkuche H; Hammon HM
    PLoS One; 2015; 10(5):e0128154. PubMed ID: 26011395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prematurity blunts the insulin- and amino acid-induced stimulation of translation initiation and protein synthesis in skeletal muscle of neonatal pigs.
    Rudar M; Naberhuis JK; Suryawan A; Nguyen HV; Stoll B; Style CC; Verla MA; Olutoye OO; Burrin DG; Fiorotto ML; Davis TA
    Am J Physiol Endocrinol Metab; 2021 Mar; 320(3):E551-E565. PubMed ID: 33427053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein and energy intakes affected amino acid concentrations in plasma, muscle, and liver, and cell signaling in the liver of growing dairy calves.
    Rius AG; Weeks HA; Cyriac J; Akers RM; Bequette BJ; Hanigan MD
    J Dairy Sci; 2012 Apr; 95(4):1983-91. PubMed ID: 22459844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supplementation of branched-chain amino acids to a reduced-protein diet improves growth performance in piglets: involvement of increased feed intake and direct muscle growth-promoting effect.
    Zheng L; Wei H; Cheng C; Xiang Q; Pang J; Peng J
    Br J Nutr; 2016 Jun; 115(12):2236-45. PubMed ID: 27079773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs.
    Zheng L; Zuo F; Zhao S; He P; Wei H; Xiang Q; Pang J; Peng J
    Br J Nutr; 2017 Apr; 117(7):911-922. PubMed ID: 28446262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maintenance of plasma branched-chain amino acid concentrations during glucose infusion directs essential amino acids to extra-mammary tissues in lactating dairy cows.
    Curtis RV; Kim JJM; Doelman J; Cant JP
    J Dairy Sci; 2018 May; 101(5):4542-4553. PubMed ID: 29477518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.