These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 34334195)
21. Determining the economic value of daily dry matter intake and associated methane emissions in dairy cattle. Richardson CM; Baes CF; Amer PR; Quinton C; Martin P; Osborne VR; Pryce JE; Miglior F Animal; 2020 Jan; 14(1):171-179. PubMed ID: 31327334 [TBL] [Abstract][Full Text] [Related]
22. Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach. Zehetmeier M; Baudracco J; Hoffmann H; Heißenhuber A Animal; 2012 Jan; 6(1):154-66. PubMed ID: 22436163 [TBL] [Abstract][Full Text] [Related]
23. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. Haas Yd; Windig JJ; Calus MP; Dijkstra J; Haan Md; Bannink A; Veerkamp RF J Dairy Sci; 2011 Dec; 94(12):6122-34. PubMed ID: 22118100 [TBL] [Abstract][Full Text] [Related]
24. Relative emissions intensity of dairy production systems: employing different functional units in life-cycle assessment. Ross SA; Topp CFE; Ennos RA; Chagunda MGG Animal; 2017 Aug; 11(8):1381-1388. PubMed ID: 28183378 [TBL] [Abstract][Full Text] [Related]
25. Dairy system, parity, and lactation stage affect enteric methane production, yield, and intensity per kilogram of milk and cheese predicted from gas chromatography fatty acids. Bittante G; Cecchinato A; Schiavon S J Dairy Sci; 2018 Feb; 101(2):1752-1766. PubMed ID: 29224867 [TBL] [Abstract][Full Text] [Related]
26. Genomic selection for feed efficiency in dairy cattle. Pryce JE; Wales WJ; de Haas Y; Veerkamp RF; Hayes BJ Animal; 2014 Jan; 8(1):1-10. PubMed ID: 24128704 [TBL] [Abstract][Full Text] [Related]
27. Impact of including growth, carcass and feed efficiency traits in the breeding goal for combined milk and beef production systems. Hietala P; Juga J Animal; 2017 Apr; 11(4):564-573. PubMed ID: 27608523 [TBL] [Abstract][Full Text] [Related]
28. Breeding for reduced methane emission and feed-efficient Holstein cows: An international response. Manzanilla-Pech CIV; L Vendahl P; Mansan Gordo D; Difford GF; Pryce JE; Schenkel F; Wegmann S; Miglior F; Chud TC; Moate PJ; Williams SRO; Richardson CM; Stothard P; Lassen J J Dairy Sci; 2021 Aug; 104(8):8983-9001. PubMed ID: 34001361 [TBL] [Abstract][Full Text] [Related]
29. Direct multitrait selection realizes the highest genetic response for ratio traits. Zetouni L; Henryon M; Kargo M; Lassen J J Anim Sci; 2017 May; 95(5):1921-1925. PubMed ID: 28726996 [TBL] [Abstract][Full Text] [Related]
30. Estimating the impact of clinical mastitis in dairy cows on greenhouse gas emissions using a dynamic stochastic simulation model: a case study. Mostert PF; Bokkers EAM; de Boer IJM; van Middelaar CE Animal; 2019 Dec; 13(12):2913-2921. PubMed ID: 31210122 [TBL] [Abstract][Full Text] [Related]
31. Unraveling the genetic basis of methane emission in dairy cattle: a comprehensive exploration and breeding approach to lower methane emissions. Worku D Anim Biotechnol; 2024 Nov; 35(1):2362677. PubMed ID: 38860914 [TBL] [Abstract][Full Text] [Related]
32. Mitigation of greenhouse gases in dairy cattle via genetic selection: 1. Genetic parameters of direct methane using noninvasive methods and proxies of methane. López-Paredes J; Goiri I; Atxaerandio R; García-Rodríguez A; Ugarte E; Jiménez-Montero JA; Alenda R; González-Recio O J Dairy Sci; 2020 Aug; 103(8):7199-7209. PubMed ID: 32475675 [TBL] [Abstract][Full Text] [Related]
33. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley. Battini F; Agostini A; Boulamanti AK; Giuntoli J; Amaducci S Sci Total Environ; 2014 May; 481():196-208. PubMed ID: 24598150 [TBL] [Abstract][Full Text] [Related]
34. Economic values for health and feed efficiency traits of dual-purpose cattle in marginal areas. Krupová Z; Krupa E; Michaličková M; Wolfová M; Kasarda R J Dairy Sci; 2016 Jan; 99(1):644-56. PubMed ID: 26585480 [TBL] [Abstract][Full Text] [Related]
35. Effect of concentrate feed level on methane emissions from grazing dairy cows. Jiao HP; Dale AJ; Carson AF; Murray S; Gordon AW; Ferris CP J Dairy Sci; 2014 Nov; 97(11):7043-53. PubMed ID: 25173463 [TBL] [Abstract][Full Text] [Related]
36. Simulation, prediction, and genetic analyses of daily methane emissions in dairy cattle. Yin T; Pinent T; Brügemann K; Simianer H; König S J Dairy Sci; 2015 Aug; 98(8):5748-62. PubMed ID: 26026753 [TBL] [Abstract][Full Text] [Related]
37. Heritability estimates for enteric methane emissions from Holstein cattle measured using noninvasive methods. Lassen J; Løvendahl P J Dairy Sci; 2016 Mar; 99(3):1959-1967. PubMed ID: 26805978 [TBL] [Abstract][Full Text] [Related]
38. Relationship between dairy cow genetic merit and profit on commercial spring calving dairy farms. Ramsbottom G; Cromie AR; Horan B; Berry DP Animal; 2012 Jul; 6(7):1031-9. PubMed ID: 23031462 [TBL] [Abstract][Full Text] [Related]
39. Impact of subclinical mastitis on greenhouse gas emissions intensity and profitability of dairy cows in Norway. Özkan Gülzari Ş; Vosough Ahmadi B; Stott AW Prev Vet Med; 2018 Feb; 150():19-29. PubMed ID: 29406080 [TBL] [Abstract][Full Text] [Related]
40. Greenhouse gas, water, and land footprint per unit of production of the California dairy industry over 50 years. Naranjo A; Johnson A; Rossow H; Kebreab E J Dairy Sci; 2020 Apr; 103(4):3760-3773. PubMed ID: 32037166 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]