These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34334438)

  • 1. Finite element analysis of the mechanical performance of a zinc alloy stent with the tenon-and-mortise structure.
    Wang S; Wu D; Li G; Peng K; Mu Y; Ohta M; Anzai H; Qiao A
    Technol Health Care; 2022; 30(2):351-359. PubMed ID: 34334438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical analysis of a novel biodegradable zinc alloy stent based on a degradation model.
    Peng K; Cui X; Qiao A; Mu Y
    Biomed Eng Online; 2019 Apr; 18(1):39. PubMed ID: 30940146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analyses for optimization design of biodegradable magnesium alloy stent.
    Li J; Zheng F; Qiu X; Wan P; Tan L; Yang K
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():705-14. PubMed ID: 25063172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element shape optimization for biodegradable magnesium alloy stents.
    Wu W; Petrini L; Gastaldi D; Villa T; Vedani M; Lesma E; Previtali B; Migliavacca F
    Ann Biomed Eng; 2010 Sep; 38(9):2829-40. PubMed ID: 20446037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A numerical corrosion-fatigue model for biodegradable Mg alloy stents.
    Shen Z; Zhao M; Zhou X; Yang H; Liu J; Guo H; Zheng Y; Yang JA
    Acta Biomater; 2019 Oct; 97():671-680. PubMed ID: 31394294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanical analysis on a new type of biodegradable magnesium-alloy stent].
    Wang X; Cui F; Li J; Zhao X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):338-41. PubMed ID: 19499798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biodegradable magnesium alloy vascular stent structure: Design, optimisation and evaluation.
    Li Y; Wang Y; Shen Z; Miao F; Wang J; Sun Y; Zhu S; Zheng Y; Guan S
    Acta Biomater; 2022 Apr; 142():402-412. PubMed ID: 35085798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of carotid stent cell design on vessel scaffolding: a case study comparing experimental investigation and numerical simulations.
    Conti M; Van Loo D; Auricchio F; De Beule M; De Santis G; Verhegghe B; Pirrelli S; Odero A
    J Endovasc Ther; 2011 Jun; 18(3):397-406. PubMed ID: 21679082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparative study on the mechanical properties of lower limb arterial stents under various deformation modes].
    Wang T; Feng H; Wang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):303-309. PubMed ID: 33913290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element simulation and optimization of mechanical performance of the magnesium-alloy biliary stent.
    Zhang Y; Ni X; Pan C
    Int J Numer Method Biomed Eng; 2022 May; 38(5):e3592. PubMed ID: 35293160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The optimal structural analysis of cobalt-chromium alloy (L-605) coronary stents.
    Wang H; Wang X; Qian H; Lou D; Song M; Zhao X
    Comput Methods Biomech Biomed Engin; 2021 Nov; 24(14):1566-1577. PubMed ID: 33759650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A feasibility study of biodegradable magnesium-aluminum-zinc-calcium-manganese (AZXM) alloys for tracheal stent application.
    Wu J; Lee B; Saha P; N Kumta P
    J Biomater Appl; 2019 Mar; 33(8):1080-1093. PubMed ID: 30717611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys.
    Bowen PK; Shearier ER; Zhao S; Guillory RJ; Zhao F; Goldman J; Drelich JW
    Adv Healthc Mater; 2016 May; 5(10):1121-40. PubMed ID: 27094868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design optimization of stent and its dilatation balloon using kriging surrogate model.
    Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B
    Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Objective Optimization of Bioresorbable Magnesium Alloy Stent by Kriging Surrogate Model.
    Wang H; Jiao L; Sun J; Yan P; Wang X; Qiu T
    Cardiovasc Eng Technol; 2022 Dec; 13(6):829-839. PubMed ID: 35414048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Looped ends versus open ends braided stent: A comparison of the mechanical behaviour using analytical and numerical methods.
    Shanahan C; Tiernan P; Tofail SAM
    J Mech Behav Biomed Mater; 2017 Nov; 75():581-591. PubMed ID: 28863400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The degradable performance of bile-duct stent based on a continuum damage model: A finite element analysis.
    Ni X; Zhang Y; Pan C
    Int J Numer Method Biomed Eng; 2020 Aug; 36(8):e3370. PubMed ID: 32449607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Finite element analysis for compression and expansion behavior of magnesium stent].
    Chen H; Liu X; Yuan G; Zhang L; Li Z; Luo Q; Lin F
    Zhongguo Yi Liao Qi Xie Za Zhi; 2014 May; 38(3):161-4, 176. PubMed ID: 25241506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element analysis and stent design: Reduction of dogboning.
    De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P
    Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.