These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34334521)

  • 1. Influence of Purification Process on the Function of Synthetic Polymer Nanoparticles.
    Yasuno G; Koide H; Oku N; Asai T
    Chem Pharm Bull (Tokyo); 2021; 69(8):773-780. PubMed ID: 34334521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of abiotic polymer nanoparticles for sequestration and neutralization of a target peptide toxin.
    Yoshimatsu K; Koide H; Hoshino Y; Shea KJ
    Nat Protoc; 2015 Apr; 10(4):595-604. PubMed ID: 25790112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rational design of a synthetic polymer nanoparticle that neutralizes a toxic peptide in vivo.
    Hoshino Y; Koide H; Furuya K; Haberaecker WW; Lee SH; Kodama T; Kanazawa H; Oku N; Shea KJ
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):33-8. PubMed ID: 22198772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic polymer nanoparticle-polysaccharide interactions: a systematic study.
    Zeng Z; Patel J; Lee SH; McCallum M; Tyagi A; Yan M; Shea KJ
    J Am Chem Soc; 2012 Feb; 134(5):2681-90. PubMed ID: 22229911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the Protein Corona of Hydrogel Nanoparticles: The Synthesis of Abiotic Protein and Peptide Affinity Reagents.
    O'Brien J; Shea KJ
    Acc Chem Res; 2016 Jun; 49(6):1200-10. PubMed ID: 27254382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of size, surface charge, PEGylation degree and concentration on the cellular uptake of polymer nanoparticles.
    Ferrari R; Lupi M; Colombo C; Morbidelli M; D'Incalci M; Moscatelli D
    Colloids Surf B Biointerfaces; 2014 Nov; 123():639-47. PubMed ID: 25456985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of synthetic polymer nanoparticles that inhibit glucose absorption from the intestine.
    Koide H; Hayashi N; Yasuno G; Okishima A; Hoshino Y; Egami H; Hamashima Y; Oku N; Asai T
    Biochem Biophys Res Commun; 2021 Jul; 561():1-6. PubMed ID: 34004514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The manufacturing techniques of drug-loaded polymeric nanoparticles from preformed polymers.
    Grabnar PA; Kristl J
    J Microencapsul; 2011; 28(4):323-35. PubMed ID: 21545323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-like particles through nanoprecipitation of mixtures of polymers of opposite charge.
    Combes A; Tang KN; Klymchenko AS; Reisch A
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1786-1795. PubMed ID: 34600342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration of Polymer Nanoparticles Through Dialysis: Efficacy and Comparison With Lyophilization for PEGylated and Zwitterionic Systems.
    Maraldi M; Ferrari R; Auriemma R; Sponchioni M; Moscatelli D
    J Pharm Sci; 2020 Aug; 109(8):2607-2614. PubMed ID: 32422318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-throughput bioimaging study to assess the impact of chitosan-based nanoparticle degradation on DNA delivery performance.
    Gomes CP; Varela-Moreira A; Leiro V; Lopes CDF; Moreno PMD; Gomez-Lazaro M; Pêgo AP
    Acta Biomater; 2016 Dec; 46():129-140. PubMed ID: 27686038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide imprinted polymer nanoparticles: a plastic antibody.
    Hoshino Y; Kodama T; Okahata Y; Shea KJ
    J Am Chem Soc; 2008 Nov; 130(46):15242-3. PubMed ID: 18942788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of Synthetic Polymer Nanoparticles Specifically Capturing Indole, a Small Toxic Molecule.
    Okishima A; Koide H; Hoshino Y; Egami H; Hamashima Y; Oku N; Asai T
    Biomacromolecules; 2019 Apr; 20(4):1644-1654. PubMed ID: 30848887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of protein-binding kinetics on synthetic polymer nanoparticles by tuning flexibility and inducing conformation changes of polymer chains.
    Hoshino Y; Nakamoto M; Miura Y
    J Am Chem Soc; 2012 Sep; 134(37):15209-12. PubMed ID: 22946923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Factors Influencing Chitosan-Based Nanoparticles-Protein Corona Interaction and Drug Delivery Applications.
    Moraru C; Mincea M; Menghiu G; Ostafe V
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33081296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Functional Nanoparticles for Intractable Disease Therapy.
    Koide H
    Biol Pharm Bull; 2021; 44(1):1-6. PubMed ID: 33390535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epitope discovery for a synthetic polymer nanoparticle: a new strategy for developing a peptide tag.
    Yoshimatsu K; Yamazaki T; Hoshino Y; Rose PE; Epstein LF; Miranda LP; Tagari P; Beierle JM; Yonamine Y; Shea KJ
    J Am Chem Soc; 2014 Jan; 136(4):1194-7. PubMed ID: 24410250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Design of Synthetic Polymer Nanoparticles That Capture and Neutralize Target Molecules].
    Koide H
    Yakugaku Zasshi; 2021; 141(9):1079-1086. PubMed ID: 34471009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.