BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 34334967)

  • 1. Global methane emissions from coal mining to continue growing even with declining coal production.
    Kholod N; Evans M; Pilcher RC; Roshchanka V; Ruiz F; Coté M; Collings R
    J Clean Prod; 2020; 256():120489. PubMed ID: 34334967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved inventory of methane emissions from coal mining in the United States.
    Kirchgessner DA; Piccot SD; Masemore SS
    J Air Waste Manag Assoc; 2000 Nov; 50(11):1904-19. PubMed ID: 11111335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Managing Methane Emissions in Abandoned Coal Mines: Comparison of Different Recovery Technologies by Integrating Techno-Economic Analysis and Life-Cycle Assessment.
    Liu Y; Gao H; Yu Z; Li C; Ren H; Zhao Y; Huang F; Guo Y; Wan M; Tian J; Chen L
    Environ Sci Technol; 2022 Oct; 56(19):13900-13908. PubMed ID: 35944011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substantial methane emissions from abandoned coal mines in China.
    Chen D; Chen A; Hu X; Li B; Li X; Guo L; Feng R; Yang Y; Fang X
    Environ Res; 2022 Nov; 214(Pt 2):113944. PubMed ID: 35870498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new approach to estimate fugitive methane emissions from coal mining in China.
    Ju Y; Sun Y; Sa Z; Pan J; Wang J; Hou Q; Li Q; Yan Z; Liu J
    Sci Total Environ; 2016 Feb; 543(Pt A):514-523. PubMed ID: 26605831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methane Emissions from Superemitting Coal Mines in Australia Quantified Using TROPOMI Satellite Observations.
    Sadavarte P; Pandey S; Maasakkers JD; Lorente A; Borsdorff T; Denier van der Gon H; Houweling S; Aben I
    Environ Sci Technol; 2021 Dec; 55(24):16573-16580. PubMed ID: 34842427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the Characteristics of CH
    Zhu A; Wang Q; Liu D; Zhao Y
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. China's CH
    Gao J; Guan C; Zhang B
    Sci Total Environ; 2020 Jul; 725():138295. PubMed ID: 32278176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Improved Approach to Estimate Methane Emissions from Coal Mining in China.
    Zhu T; Bian W; Zhang S; Di P; Nie B
    Environ Sci Technol; 2017 Nov; 51(21):12072-12080. PubMed ID: 28956434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of coal mine ventilation air flows.
    Su S; Chen H; Teakle P; Xue S
    J Environ Manage; 2008 Jan; 86(1):44-62. PubMed ID: 17239518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyses of geological and hydrodynamic controls on methane emissions experienced in a Lower Kittanning coal mine.
    Karacan CÖ; Goodman GV
    Int J Coal Geol; 2012 Aug; 98():110-127. PubMed ID: 26478644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution assessment of coal mining methane emissions by satellite in Shanxi, China.
    Peng S; Giron C; Liu G; d'Aspremont A; Benoit A; Lauvaux T; Lin X; de Almeida Rodrigues H; Saunois M; Ciais P
    iScience; 2023 Dec; 26(12):108375. PubMed ID: 38025773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental impact of mining-associated carbon emissions and analysis of cleaner production strategies in China.
    Yang B; Bai Z; Zhang J
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):13649-13659. PubMed ID: 33188521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greenhouse gas emissions from Australian open-cut coal mines: contribution from spontaneous combustion and low-temperature oxidation.
    Day SJ; Carras JN; Fry R; Williams DJ
    Environ Monit Assess; 2010 Jul; 166(1-4):529-41. PubMed ID: 19572109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Updated greenhouse gas inventory estimates for Indian underground coal mining based on the 2019 IPCC refinements.
    Singh AK; Singh U; Panigrahi DC; Singh J
    iScience; 2022 Sep; 25(9):104946. PubMed ID: 36065183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methane emissions from abandoned coal and oil and gas developments in New Brunswick and Nova Scotia.
    Williams JP; Risk D; Marshall A; Nickerson N; Martell A; Creelman C; Grace M; Wach G
    Environ Monit Assess; 2019 Jul; 191(8):479. PubMed ID: 31267345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass-derived carbon composites for enrichment of dilute methane from underground coal mines.
    Bae JS; Jin Y; Huynh C; Su S
    J Environ Manage; 2018 Jul; 217():373-380. PubMed ID: 29625406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Will greenhouse gas emissions increase with mining depth in coal mines? An analysis of gas occurrence under varying in-situ stress conditions.
    Zhao W; Zhao D; Wang K; Fan L; Zhao Z; Dong H; Shu L
    Sci Total Environ; 2024 Jun; 945():173957. PubMed ID: 38901602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuzzy multi-criteria decision-making framework for controlling methane explosions in coal mines.
    Kursunoglu N
    Environ Sci Pollut Res Int; 2024 Feb; 31(6):9045-9061. PubMed ID: 38183552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of high methane-emitting abandoned oil and gas wells.
    Kang M; Christian S; Celia MA; Mauzerall DL; Bill M; Miller AR; Chen Y; Conrad ME; Darrah TH; Jackson RB
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13636-13641. PubMed ID: 27849603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.