These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34335006)

  • 1. Investigation of theoretical scaling laws using large eddy simulations for airborne spreading of viral contagion from sneezing and coughing.
    Liu K; Allahyari M; Salinas J; Zgheib N; Balachandar S
    Phys Fluids (1994); 2021 Jun; 33(6):063318. PubMed ID: 34335006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Transmission Dynamics of COVID-19-Type Infections by Direct Numerical Simulations of Cough/Sneeze Flows.
    Diwan SS; Ravichandran S; Govindarajan R; Narasimha R
    Trans Indian Natl Acad Eng; 2020; 5(2):255-261. PubMed ID: 38624374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peering inside a cough or sneeze to explain enhanced airborne transmission under dry weather.
    Liu K; Allahyari M; Salinas JS; Zgheib N; Balachandar S
    Sci Rep; 2021 May; 11(1):9826. PubMed ID: 33972590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: An experimental study and transient CFD modeling.
    Bahramian A; Mohammadi M; Ahmadi G
    Sci Total Environ; 2023 Feb; 858(Pt 2):159444. PubMed ID: 36252673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large eddy simulation of cough jet dynamics, droplet transport, and inhalability over a ten minute exposure.
    Calmet H; Inthavong K; Both A; Surapaneni A; Mira D; Egukitza B; Houzeaux G
    Phys Fluids (1994); 2021 Dec; 33(12):125122. PubMed ID: 35002205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How far droplets can move in indoor environments--revisiting the Wells evaporation-falling curve.
    Xie X; Li Y; Chwang AT; Ho PL; Seto WH
    Indoor Air; 2007 Jun; 17(3):211-25. PubMed ID: 17542834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air cleaning technologies: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2005; 5(17):1-52. PubMed ID: 23074468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of indoor environmental conditions on airborne transmission and lifetime of sneeze droplets in a confined space: a way to reduce COVID-19 spread.
    Bahramian A
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):44067-44085. PubMed ID: 36680724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaporation and dispersion of respiratory droplets from coughing.
    Liu L; Wei J; Li Y; Ooi A
    Indoor Air; 2017 Jan; 27(1):179-190. PubMed ID: 26945674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct numerical simulation of the turbulent flow generated during a violent expiratory event.
    Fabregat A; Gisbert F; Vernet A; Dutta S; Mittal K; Pallarès J
    Phys Fluids (1994); 2021 Mar; 33(3):035122. PubMed ID: 33746495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of upper respiratory tract anatomy and head movement on the buoyant flow and particle dispersion generated in a violent expiratory event.
    Pallares J; Fabregat A; Cito S
    J Aerosol Sci; 2022 Nov; 166():106052. PubMed ID: 35935165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional mathematical framework for evaporation dynamics of respiratory droplets.
    Majee S; Saha A; Chaudhuri S; Chakravortty D; Basu S
    Phys Fluids (1994); 2021 Oct; 33(10):103302. PubMed ID: 34744412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimates of the stochasticity of droplet dispersion by a cough.
    Trivedi S; Gkantonas S; Mesquita LCC; Iavarone S; de Oliveira PM; Mastorakos E
    Phys Fluids (1994); 2021 Nov; 33(11):115130. PubMed ID: 35002201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On coughing and airborne droplet transmission to humans.
    Dbouk T; Drikakis D
    Phys Fluids (1994); 2020 May; 32(5):053310. PubMed ID: 32574229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the Secrets of Turbulence in a Fluid Puff.
    Mazzino A; Rosti ME
    Phys Rev Lett; 2021 Aug; 127(9):094501. PubMed ID: 34506163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the load of SARS-CoV-2 virus in human expelled particles during coughing and speaking.
    Wang Y; Xu G; Huang YW
    PLoS One; 2020; 15(10):e0241539. PubMed ID: 33125421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fate of Exhaled Droplets From Breathing and Coughing in Supermarket Checkouts and Passenger Cars.
    Nishandar SR; He Y; Princevac M; Edwards RD
    Environ Health Insights; 2023; 17():11786302221148274. PubMed ID: 36644342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation on indoor environment decontamination after sneezing.
    Kumar S; King MD
    Environ Res; 2022 Oct; 213():113665. PubMed ID: 35714690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of saliva fluid properties on pathogen transmissibility.
    Reyes J; Fontes D; Bazzi A; Otero M; Ahmed K; Kinzel M
    Sci Rep; 2021 Aug; 11(1):16051. PubMed ID: 34362974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct numerical simulation of turbulent dispersion of evaporative aerosol clouds produced by an intense expiratory event.
    Fabregat A; Gisbert F; Vernet A; Ferré JA; Mittal K; Dutta S; Pallarès J
    Phys Fluids (1994); 2021 Mar; 33(3):033329. PubMed ID: 33897242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.