These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34335018)

  • 1. Assessing the Spatio-temporal Spread of COVID-19 via Compartmental Models with Diffusion in Italy, USA, and Brazil.
    Grave M; Viguerie A; Barros GF; Reali A; Coutinho ALGA
    Arch Comput Methods Eng; 2021; 28(6):4205-4223. PubMed ID: 34335018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive mesh refinement and coarsening for diffusion-reaction epidemiological models.
    Grave M; Coutinho ALGA
    Comput Mech; 2021; 67(4):1177-1199. PubMed ID: 33649692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling nonlocal behavior in epidemics via a reaction-diffusion system incorporating population movement along a network.
    Grave M; Viguerie A; Barros GF; Reali A; Andrade RFS; Coutinho ALGA
    Comput Methods Appl Mech Eng; 2022 Nov; 401():115541. PubMed ID: 36124053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating the spread of COVID-19
    Viguerie A; Lorenzo G; Auricchio F; Baroli D; Hughes TJR; Patton A; Reali A; Yankeelov TE; Veneziani A
    Appl Math Lett; 2021 Jan; 111():106617. PubMed ID: 32834475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delay differential equations for the spatially resolved simulation of epidemics with specific application to COVID-19.
    Guglielmi N; Iacomini E; Viguerie A
    Math Methods Appl Sci; 2022 May; 45(8):4752-4771. PubMed ID: 35464828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion-reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study.
    Viguerie A; Veneziani A; Lorenzo G; Baroli D; Aretz-Nellesen N; Patton A; Yankeelov TE; Reali A; Hughes TJR; Auricchio F
    Comput Mech; 2020; 66(5):1131-1152. PubMed ID: 32836602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compartmental structures used in modeling COVID-19: a scoping review.
    Kong L; Duan M; Shi J; Hong J; Chang Z; Zhang Z
    Infect Dis Poverty; 2022 Jun; 11(1):72. PubMed ID: 35729655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syndromic Surveillance Using Structured Telehealth Data: Case Study of the First Wave of COVID-19 in Brazil.
    Boaventura VS; Grave M; Cerqueira-Silva T; Carreiro R; Pinheiro A; Coutinho A; Barral Netto M
    JMIR Public Health Surveill; 2023 Jan; 9():e40036. PubMed ID: 36692925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An outbreak vector-host epidemic model with spatial structure: the 2015-2016 Zika outbreak in Rio De Janeiro.
    Fitzgibbon WE; Morgan JJ; Webb GF
    Theor Biol Med Model; 2017 Mar; 14(1):7. PubMed ID: 28347332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social isolation really work?
    Crokidakis N
    Chaos Solitons Fractals; 2020 Jul; 136():109930. PubMed ID: 32501374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forecasting COVID-19-Associated Hospitalizations under Different Levels of Social Distancing in Lombardy and Emilia-Romagna, Northern Italy: Results from an Extended SEIR Compartmental Model.
    Reno C; Lenzi J; Navarra A; Barelli E; Gori D; Lanza A; Valentini R; Tang B; Fantini MP
    J Clin Med; 2020 May; 9(5):. PubMed ID: 32429121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epidemiological Predictive Modeling of COVID-19 Infection: Development, Testing, and Implementation on the Population of the Benelux Union.
    Šušteršič T; Blagojević A; Cvetković D; Cvetković A; Lorencin I; Šegota SB; Milovanović D; Baskić D; Car Z; Filipović N
    Front Public Health; 2021; 9():727274. PubMed ID: 34778171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the spatial spread of COVID-19 in a German district using a diffusion model.
    Schäfer M; Heidrich P; Götz T
    Math Biosci Eng; 2023 Nov; 20(12):21246-21266. PubMed ID: 38124596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. System Inference Via Field Inversion for the Spatio-Temporal Progression of Infectious Diseases: Studies of COVID-19 in Michigan and Mexico.
    Wang Z; Carrasco-Teja M; Zhang X; Teichert GH; Garikipati K
    Arch Comput Methods Eng; 2021; 28(6):4283-4295. PubMed ID: 34611391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and tracking Covid-19 cases using Big Data analytics on HPCC system platformm.
    Villanustre F; Chala A; Dev R; Xu L; LexisNexis JS; Furht B; Khoshgoftaar T
    J Big Data; 2021; 8(1):33. PubMed ID: 33614394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking the transmission dynamics of COVID-19 with a time-varying coefficient state-space model.
    Keller JP; Zhou T; Kaplan A; Anderson GB; Zhou W
    Stat Med; 2022 Jul; 41(15):2745-2767. PubMed ID: 35322455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Was the COVID-19 epidemic synchronous in space? An analysis in the health regions of the Rio de Janeiro state, 2020-2022.
    Amaral LF; Lana RM; Bastos LS
    Rev Bras Epidemiol; 2024; 27():e240010. PubMed ID: 38422234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation and forecasting models of COVID-19 taking into account spatio-temporal dynamic characteristics: A review.
    Wang P; Zheng X; Liu H
    Front Public Health; 2022; 10():1033432. PubMed ID: 36330112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.