These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 34335658)
1. Genetic Dissection of Grain Yield of Maize and Yield-Related Traits Through Association Mapping and Genomic Prediction. Ma J; Cao Y Front Plant Sci; 2021; 12():690059. PubMed ID: 34335658 [TBL] [Abstract][Full Text] [Related]
2. Gene based markers improve precision of genome-wide association studies and accuracy of genomic predictions in rice breeding. Anilkumar C; Muhammed Azharudheen TP; Sah RP; Sunitha NC; Devanna BN; Marndi BC; Patra BC Heredity (Edinb); 2023 May; 130(5):335-345. PubMed ID: 36792661 [TBL] [Abstract][Full Text] [Related]
3. Development of the maize 5.5K loci panel for genomic prediction through genotyping by target sequencing. Ma J; Cao Y; Wang Y; Ding Y Front Plant Sci; 2022; 13():972791. PubMed ID: 36438102 [TBL] [Abstract][Full Text] [Related]
4. Genome wide association analysis for yield related traits in maize. Zeng T; Meng Z; Yue R; Lu S; Li W; Li W; Meng H; Sun Q BMC Plant Biol; 2022 Sep; 22(1):449. PubMed ID: 36127632 [TBL] [Abstract][Full Text] [Related]
5. GWAS and Meta-QTL Analysis of Yield-Related Ear Traits in Maize. Qian F; Jing J; Zhang Z; Chen S; Sang Z; Li W Plants (Basel); 2023 Nov; 12(22):. PubMed ID: 38005703 [TBL] [Abstract][Full Text] [Related]
6. Genomic Prediction for Grain Yield and Yield-Related Traits in Chinese Winter Wheat. Ali M; Zhang Y; Rasheed A; Wang J; Zhang L Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32079240 [TBL] [Abstract][Full Text] [Related]
7. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.). Yi Q; Liu Y; Hou X; Zhang X; Li H; Zhang J; Liu H; Hu Y; Yu G; Li Y; Wang Y; Huang Y BMC Plant Biol; 2019 Sep; 19(1):392. PubMed ID: 31500559 [TBL] [Abstract][Full Text] [Related]
8. Multiple-trait analyses improved the accuracy of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine. Cappa EP; Chen C; Klutsch JG; Sebastian-Azcona J; Ratcliffe B; Wei X; Da Ros L; Ullah A; Liu Y; Benowicz A; Sadoway S; Mansfield SD; Erbilgin N; Thomas BR; El-Kassaby YA BMC Genomics; 2022 Jul; 23(1):536. PubMed ID: 35870886 [TBL] [Abstract][Full Text] [Related]
10. Genetic Dissection of Hybrid Performance and Heterosis for Yield-Related Traits in Maize. Li D; Zhou Z; Lu X; Jiang Y; Li G; Li J; Wang H; Chen S; Li X; Würschum T; Reif JC; Xu S; Li M; Liu W Front Plant Sci; 2021; 12():774478. PubMed ID: 34917109 [TBL] [Abstract][Full Text] [Related]
12. Identification of Genomic Regions Associated with Agronomic and Disease Resistance Traits in a Large Set of Multiple DH Populations. Sadessa K; Beyene Y; Ifie BE; Suresh LM; Olsen MS; Ogugo V; Wegary D; Tongoona P; Danquah E; Offei SK; Prasanna BM; Gowda M Genes (Basel); 2022 Feb; 13(2):. PubMed ID: 35205395 [TBL] [Abstract][Full Text] [Related]
13. QTL Mapping of Kernel Number-Related Traits and Validation of One Major QTL for Ear Length in Maize. Huo D; Ning Q; Shen X; Liu L; Zhang Z PLoS One; 2016; 11(5):e0155506. PubMed ID: 27176215 [TBL] [Abstract][Full Text] [Related]
14. Marker-trait association analyses revealed major novel QTLs for grain yield and related traits in durum wheat. Mulugeta B; Tesfaye K; Ortiz R; Johansson E; Hailesilassie T; Hammenhag C; Hailu F; Geleta M Front Plant Sci; 2022; 13():1009244. PubMed ID: 36777537 [TBL] [Abstract][Full Text] [Related]
15. Investigating the genetic basis of maize ear characteristics: a comprehensive genome-wide study utilizing high-throughput phenotypic measurement method and system. Wang J; Zhao S; Zhang Y; Lu X; Du J; Wang C; Wen W; Guo X; Zhao C Front Plant Sci; 2023; 14():1248446. PubMed ID: 37701799 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide association studies of seven agronomic traits under two sowing conditions in bread wheat. Jamil M; Ali A; Gul A; Ghafoor A; Napar AA; Ibrahim AMH; Naveed NH; Yasin NA; Mujeeb-Kazi A BMC Plant Biol; 2019 Apr; 19(1):149. PubMed ID: 31003597 [TBL] [Abstract][Full Text] [Related]
17. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction. Bandeira E Sousa M; Cuevas J; de Oliveira Couto EG; Pérez-Rodríguez P; Jarquín D; Fritsche-Neto R; Burgueño J; Crossa J G3 (Bethesda); 2017 Jun; 7(6):1995-2014. PubMed ID: 28455415 [TBL] [Abstract][Full Text] [Related]
18. Using markers with large effect in genetic and genomic predictions. Lopes MS; Bovenhuis H; van Son M; Nordbø Ø; Grindflek EH; Knol EF; Bastiaansen JW J Anim Sci; 2017 Jan; 95(1):59-71. PubMed ID: 28177367 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Single-Trait and Multi-Trait Genome-Wide Association Models and Inclusion of Correlated Traits in the Dissection of the Genetic Architecture of a Complex Trait in a Breeding Program. Merrick LF; Burke AB; Zhang Z; Carter AH Front Plant Sci; 2021; 12():772907. PubMed ID: 35154175 [TBL] [Abstract][Full Text] [Related]
20. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. Li F; Wen W; Liu J; Zhang Y; Cao S; He Z; Rasheed A; Jin H; Zhang C; Yan J; Zhang P; Wan Y; Xia X BMC Plant Biol; 2019 Apr; 19(1):168. PubMed ID: 31035920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]