BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34335693)

  • 21. LPI-SKMSC: Predicting LncRNA-Protein Interactions with Segmented k-mer Frequencies and Multi-space Clustering.
    Sun DZ; Sun ZL; Liu M; Yong SH
    Interdiscip Sci; 2024 Jan; ():. PubMed ID: 38206558
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple Partial Regularized Nonnegative Matrix Factorization for Predicting Ontological Functions of lncRNAs.
    Zhao J; Ma X
    Front Genet; 2018; 9():685. PubMed ID: 30728826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Capsule-LPI: a LncRNA-protein interaction predicting tool based on a capsule network.
    Li Y; Sun H; Feng S; Zhang Q; Han S; Du W
    BMC Bioinformatics; 2021 May; 22(1):246. PubMed ID: 33985444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel lncRNA-protein interaction prediction method based on deep forest with cascade forest structure.
    Tian X; Shen L; Wang Z; Zhou L; Peng L
    Sci Rep; 2021 Sep; 11(1):18881. PubMed ID: 34556758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A path-based computational model for long non-coding RNA-protein interaction prediction.
    Zhang H; Ming Z; Fan C; Zhao Q; Liu H
    Genomics; 2020 Mar; 112(2):1754-1760. PubMed ID: 31639442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graph regularized non-negative matrix factorization with prior knowledge consistency constraint for drug-target interactions prediction.
    Zhang J; Xie M
    BMC Bioinformatics; 2022 Dec; 23(1):564. PubMed ID: 36581822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting potential interactions between lncRNAs and proteins via combined graph auto-encoder methods.
    Zhao J; Sun J; Shuai SC; Zhao Q; Shuai J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36515153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. LPI-CNNCP: Prediction of lncRNA-protein interactions by using convolutional neural network with the copy-padding trick.
    Zhang SW; Zhang XX; Fan XN; Li WN
    Anal Biochem; 2020 Jul; 601():113767. PubMed ID: 32454029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LPI-ETSLP: lncRNA-protein interaction prediction using eigenvalue transformation-based semi-supervised link prediction.
    Hu H; Zhu C; Ai H; Zhang L; Zhao J; Zhao Q; Liu H
    Mol Biosyst; 2017 Aug; 13(9):1781-1787. PubMed ID: 28702594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Learning distributed representations of RNA and protein sequences and its application for predicting lncRNA-protein interactions.
    Yi HC; You ZH; Cheng L; Zhou X; Jiang TH; Li X; Wang YB
    Comput Struct Biotechnol J; 2020; 18():20-26. PubMed ID: 31890140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions.
    Zhang W; Yue X; Tang G; Wu W; Huang F; Zhang X
    PLoS Comput Biol; 2018 Dec; 14(12):e1006616. PubMed ID: 30533006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RLF-LPI: An ensemble learning framework using sequence information for predicting lncRNA-protein interaction based on AE-ResLSTM and fuzzy decision.
    Song J; Tian S; Yu L; Yang Q; Dai Q; Wang Y; Wu W; Duan X
    Math Biosci Eng; 2022 Mar; 19(5):4749-4764. PubMed ID: 35430839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A weighted non-negative matrix factorization approach to predict potential associations between drug and disease.
    Wang MN; Xie XJ; You ZH; Ding DW; Wong L
    J Transl Med; 2022 Dec; 20(1):552. PubMed ID: 36463215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ACCBN: ant-Colony-clustering-based bipartite network method for predicting long non-coding RNA-protein interactions.
    Zhu R; Li G; Liu JX; Dai LY; Guo Y
    BMC Bioinformatics; 2019 Jan; 20(1):16. PubMed ID: 30626319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LPI-CSFFR: Combining serial fusion with feature reuse for predicting LncRNA-protein interactions.
    Huang X; Shi Y; Yan J; Qu W; Li X; Tan J
    Comput Biol Chem; 2022 Aug; 99():107718. PubMed ID: 35785626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DSCMF: prediction of LncRNA-disease associations based on dual sparse collaborative matrix factorization.
    Liu JX; Gao MM; Cui Z; Gao YL; Li F
    BMC Bioinformatics; 2021 May; 22(Suppl 3):241. PubMed ID: 33980147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. WAFNRLTG: A Novel Model for Predicting LncRNA Target Genes Based on Weighted Average Fusion Network Representation Learning Method.
    Li J; Yang Z; Wang D; Li Z
    Front Cell Dev Biol; 2021; 9():820342. PubMed ID: 35127729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Screening potential lncRNA biomarkers for breast cancer and colorectal cancer combining random walk and logistic matrix factorization.
    Li S; Chang M; Tong L; Wang Y; Wang M; Wang F
    Front Genet; 2022; 13():1023615. PubMed ID: 36744179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inferring LncRNA-disease associations based on graph autoencoder matrix completion.
    Wu X; Lan W; Chen Q; Dong Y; Liu J; Peng W
    Comput Biol Chem; 2020 May; 87():107282. PubMed ID: 32502934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel Collaborative Weighted Non-negative Matrix Factorization Improves Prediction of Disease-Associated Human Microbes.
    Xu D; Xu H; Zhang Y; Gao R
    Front Microbiol; 2022; 13():834982. PubMed ID: 35369503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.