BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 34335694)

  • 1. Comparative Transcriptome and Weighted Gene Co-expression Network Analysis Identify Key Transcription Factors of
    Jia X; Feng H; Bu Y; Ji N; Lyu Y; Zhao S
    Front Genet; 2021; 12():690264. PubMed ID: 34335694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological Characteristic Changes and Full-Length Transcriptome of Rose (Rosa chinensis) Roots and Leaves in Response to Drought Stress.
    Li W; Fu L; Geng Z; Zhao X; Liu Q; Jiang X
    Plant Cell Physiol; 2021 Feb; 61(12):2153-2166. PubMed ID: 33165546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome of the floral transition in Rosa chinensis 'Old Blush'.
    Guo X; Yu C; Luo L; Wan H; Zhen N; Xu T; Tan J; Pan H; Zhang Q
    BMC Genomics; 2017 Feb; 18(1):199. PubMed ID: 28228130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-course transcriptome and WGCNA analysis revealed the drought response mechanism of two sunflower inbred lines.
    Wu Y; Wang Y; Shi H; Hu H; Yi L; Hou J
    PLoS One; 2022; 17(4):e0265447. PubMed ID: 35363798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis.
    Han Y; Wan H; Cheng T; Wang J; Yang W; Pan H; Zhang Q
    Sci Rep; 2017 Feb; 7():43382. PubMed ID: 28225056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of drought and rehydration on root gene expression in seedlings of Pinus massoniana Lamb.
    Chen X; Chen H; Xu H; Li M; Luo Q; Wang T; Yang Z; Gan S
    Tree Physiol; 2023 Sep; 43(9):1619-1640. PubMed ID: 37166353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Series-temporal transcriptome profiling of cotton reveals the response mechanism of phosphatidylinositol signaling system in the early stage of drought stress.
    Wang X; Deng Y; Gao L; Kong F; Shen G; Duan B; Wang Z; Dai M; Han Z
    Genomics; 2022 Sep; 114(5):110465. PubMed ID: 36038061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative transcriptome analysis of the floral transition in Rosa chinensis 'Old Blush' and R. odorata var. gigantea.
    Guo X; Yu C; Luo L; Wan H; Li Y; Wang J; Cheng T; Pan H; Zhang Q
    Sci Rep; 2017 Jul; 7(1):6068. PubMed ID: 28729527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinated mechanisms of leaves and roots in response to drought stress underlying full-length transcriptome profiling in Vicia sativa L.
    Min X; Lin X; Ndayambaza B; Wang Y; Liu W
    BMC Plant Biol; 2020 Apr; 20(1):165. PubMed ID: 32293274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Insights on Drought Stress Response by Global Investigation of Gene Expression Changes in Sheepgrass (Leymus chinensis).
    Zhao P; Liu P; Yuan G; Jia J; Li X; Qi D; Chen S; Ma T; Liu G; Cheng L
    Front Plant Sci; 2016; 7():954. PubMed ID: 27446180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global Transcriptome and Weighted Gene Co-expression Network Analyses of Growth-Stage-Specific Drought Stress Responses in Maize.
    Liu S; Zenda T; Dong A; Yang Y; Wang N; Duan H
    Front Genet; 2021; 12():645443. PubMed ID: 33574835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene co-expression network analysis to identify critical modules and candidate genes of drought-resistance in wheat.
    Lv L; Zhang W; Sun L; Zhao A; Zhang Y; Wang L; Liu Y; Li Z; Li H; Chen X
    PLoS One; 2020; 15(8):e0236186. PubMed ID: 32866164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome-Based Weighted Gene Co-Expression Network Analysis Reveals the Photosynthesis Pathway and Hub Genes Involved in Promoting Tiller Growth under Repeated Drought-Rewatering Cycles in Perennial Ryegrass.
    Ding Y; Zhang X; Li J; Wang R; Chen J; Kong L; Li X; Yang Z; Zhuang L
    Plants (Basel); 2024 Mar; 13(6):. PubMed ID: 38592951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptome analysis of Rosa chinensis 'Slater's crimson China' provides insights into the crucial factors and signaling pathways in heat stress response.
    Li ZQ; Xing W; Luo P; Zhang FJ; Jin XL; Zhang MH
    Plant Physiol Biochem; 2019 Sep; 142():312-331. PubMed ID: 31352248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentially Expressed Genes Related to Flowering Transition between Once- and Continuous-Flowering Roses.
    Yi X; Gao H; Yang Y; Yang S; Luo L; Yu C; Wang J; Cheng T; Zhang Q; Pan H
    Biomolecules; 2021 Dec; 12(1):. PubMed ID: 35053206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional reprogramming during recovery from drought stress in Eucalyptus grandis.
    Teshome DT; Zharare GE; Ployet R; Naidoo S
    Tree Physiol; 2023 Jun; 43(6):979-994. PubMed ID: 36851855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions.
    Gong L; Zhang H; Gan X; Zhang L; Chen Y; Nie F; Shi L; Li M; Guo Z; Zhang G; Song Y
    PLoS One; 2015; 10(5):e0128041. PubMed ID: 26010543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global Gene Expression Analysis Reveals Crosstalk between Response Mechanisms to Cold and Drought Stresses in Cassava Seedlings.
    Li S; Yu X; Cheng Z; Yu X; Ruan M; Li W; Peng M
    Front Plant Sci; 2017; 8():1259. PubMed ID: 28769962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach.
    Mehta RH; Ponnuchamy M; Kumar J; Reddy NR
    Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress.
    Shi P; Gu M
    BMC Plant Biol; 2020 Dec; 20(1):568. PubMed ID: 33380327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.