These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34335709)

  • 1. Evaluation of Mechanical Properties of Materials Based on Genetic Algorithm Optimizing BP Neural Network.
    Liu T; Zou G
    Comput Intell Neurosci; 2021; 2021():2115653. PubMed ID: 34335709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy.
    Zhang X; Yuan G; Mao L; Niu J; Fu P; Ding W
    J Mech Behav Biomed Mater; 2012 Mar; 7():77-86. PubMed ID: 22340687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cold-rolling behaviour of AZ31 tubes for fabrication of biodegradable stents.
    Zhang Y; Kent D; Wang G; StJohn D; Dargusch MS
    J Mech Behav Biomed Mater; 2014 Nov; 39():292-303. PubMed ID: 25171746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys.
    Hamad K; Ko YG
    Sci Rep; 2016 Jul; 6():29954. PubMed ID: 27406685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Artificial Neural Network-Based Models to Investigate Deformation Behavior of AZ31B Magnesium Alloy at Warm Tensile Deformation.
    Murugesan M; Yu JH; Chung W; Lee CW
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on Microstructure and Mechanical Properties of TC4/AZ31 Magnesium Matrix Nanocomposites.
    Chen Y; Yao Y; Han S; Feng X; Luo T; Zheng K
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation.
    Fintová S; Kunz L
    J Mech Behav Biomed Mater; 2015 Feb; 42():219-28. PubMed ID: 25498295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials.
    Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J
    J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of SiC Nanoparticles on AZ31 Magnesium Alloy.
    Subramani M; Huang SJ; Borodianskiy K
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strengthening Effects of Zn Addition on an Ultrahigh Ductility Mg-Gd-Zr Magnesium Alloy.
    Hu Y; Zhang C; Zheng T; Pan F; Tang A
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30314339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical behaviour of biodegradable AZ31 magnesium alloy after long term in vitro degradation.
    Adekanmbi I; Mosher CZ; Lu HH; Riehle M; Kubba H; Tanner KE
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1135-1144. PubMed ID: 28531989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degraded and osteogenic properties of coated magnesium alloy AZ31; an experimental study.
    Zhuang J; Jing Y; Wang Y; Zhang J; Xie H; Yan J
    J Orthop Surg Res; 2016 Mar; 11():30. PubMed ID: 26975841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials.
    Tong X; Zhang D; Zhang X; Su Y; Shi Z; Wang K; Lin J; Li Y; Lin J; Wen C
    Acta Biomater; 2018 Dec; 82():197-204. PubMed ID: 30316837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and Composition Design of Low-Alloy Steel's Mechanical Properties Based on Neural Networks and Genetic Algorithms.
    Zhu Z; Liang Y; Zou J
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Thermal History on Microstructures and Mechanical Properties of AZ31 Magnesium Alloy Prepared by Friction Stir Processing.
    Chai F; Zhang D; Li Y
    Materials (Basel); 2014 Feb; 7(3):1573-1589. PubMed ID: 28788532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mg/ZrO
    Qiao K; Zhang T; Wang K; Yuan S; Zhang S; Wang L; Wang Z; Peng P; Cai J; Liu C; Wang W
    Front Bioeng Biotechnol; 2021; 9():605171. PubMed ID: 33842443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.
    Kannan MB; Raman RK
    Biomaterials; 2008 May; 29(15):2306-14. PubMed ID: 18313746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Mechanical Properties by Artificial Neural Networks to Characterize the Plastic Behavior of Aluminum Alloys.
    Merayo D; Rodríguez-Prieto A; Camacho AM
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33228013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue property of a bioabsorbable magnesium alloy with a hydroxyapatite coating formed by a chemical solution deposition.
    Hiromoto S; Tomozawa M; Maruyama N
    J Mech Behav Biomed Mater; 2013 Sep; 25():1-10. PubMed ID: 23727947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of binary Mg-Ca alloys for use as biodegradable materials within bone.
    Li Z; Gu X; Lou S; Zheng Y
    Biomaterials; 2008 Apr; 29(10):1329-44. PubMed ID: 18191191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.