BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34335866)

  • 1. Bioinformatics Analysis of the Molecular Mechanism and Potential Treatment Target of Ankylosing Spondylitis.
    Meng F; Du N; Xu D; Kuai L; Liu L; Xiu M
    Comput Math Methods Med; 2021; 2021():7471291. PubMed ID: 34335866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of potential target genes for ankylosing spondylitis treatment.
    Ni Y; Jiang C
    Medicine (Baltimore); 2018 Feb; 97(8):e9760. PubMed ID: 29465556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated bioinformatics analysis for differentially expressed genes and signaling pathways identification in gastric cancer.
    Yang C; Gong A
    Int J Med Sci; 2021; 18(3):792-800. PubMed ID: 33437215
    [No Abstract]   [Full Text] [Related]  

  • 4. Predicting the potential ankylosing spondylitis-related genes utilizing bioinformatics approaches.
    Zhao H; Wang D; Fu D; Xue L
    Rheumatol Int; 2015 Jun; 35(6):973-9. PubMed ID: 25432079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer.
    Yang D; He Y; Wu B; Deng Y; Wang N; Li M; Liu Y
    J Ovarian Res; 2020 Jan; 13(1):10. PubMed ID: 31987036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of potential crucial genes associated with early-onset preeclampsia via bioinformatic analysis.
    Kang Q; Li W; Xiao J; Yu N; Fan L; Sha M; Ma S; Wu J; Chen S
    Pregnancy Hypertens; 2021 Jun; 24():27-36. PubMed ID: 33640831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA sequencing and bioinformatics analysis of differentially expressed genes in the peripheral serum of ankylosing spondylitis patients.
    Bie Y; Zheng X; Chen X; Liu X; Wang L; Sun Y; Kou J
    J Orthop Surg Res; 2023 May; 18(1):394. PubMed ID: 37254181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PDGFRB as a potential therapeutic target of ankylosing spondylitis: validation following bioinformatics analysis.
    Feng X; Zhu S; Yan Z; Wang C; Tong W; Xu W
    Cell Mol Biol (Noisy-le-grand); 2020 Sep; 66(6):127-134. PubMed ID: 33040798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatics Analysis Identifies Hub Genes and Molecular Pathways Involved in Sepsis-Induced Myopathy.
    Ning YL; Yang ZQ; Xian SX; Lin JZ; Lin XF; Chen WT
    Med Sci Monit; 2020 Feb; 26():e919665. PubMed ID: 32008037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of hub genes and pathways in adrenocortical carcinoma by integrated bioinformatic analysis.
    Guo J; Gu Y; Ma X; Zhang L; Li H; Yan Z; Han Y; Xie L; Guo X
    J Cell Mol Med; 2020 Apr; 24(8):4428-4438. PubMed ID: 32147961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics Analysis of Immune Cell Infiltration and Diagnostic Biomarkers between Ankylosing Spondylitis and Inflammatory Bowel Disease.
    Zhang X; Chen T; Qian X; He X
    Comput Math Methods Med; 2023; 2023():9065561. PubMed ID: 36643579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinformatics analysis of differentially expressed genes in subchondral bone in early experimental osteoarthritis using microarray data.
    Wang Z; Ji Y; Bao HW
    J Orthop Surg Res; 2020 Aug; 15(1):310. PubMed ID: 32771051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatics analysis of diagnostic biomarkers for Alzheimer's disease in peripheral blood based on sex differences and support vector machine algorithm.
    Ji W; An K; Wang C; Wang S
    Hereditas; 2022 Oct; 159(1):38. PubMed ID: 36195955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of hub genes in rheumatoid arthritis through an integrated bioinformatics approach.
    Wu R; Long L; Zhou Q; Su J; Su W; Zhu J
    J Orthop Surg Res; 2021 Jul; 16(1):458. PubMed ID: 34271942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification for Exploring Underlying Pathogenesis and Therapy Strategy of Oral Squamous Cell Carcinoma by Bioinformatics Analysis.
    Xu Z; Jiang P; He S
    Med Sci Monit; 2019 Dec; 25():9216-9226. PubMed ID: 31794546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated microarray analysis to identify potential biomarkers and therapeutic targets in dilated cardiomyopathy.
    Zhang H; Huo J; Jiang W; Shan Q
    Mol Med Rep; 2020 Aug; 22(2):915-925. PubMed ID: 32626989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Biomarker
    Xiao B; Cui PL; Li HC; Wang C; Zhang YZ; Wu ZM; Wu CA
    Front Biosci (Landmark Ed); 2023 Dec; 28(12):343. PubMed ID: 38179754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Functional Enrichment Analysis of Potential Diagnostic and Therapeutic Targets in Adamantinomatous Craniopharyngioma.
    Zou YF; Meng LB; Wang QQ; He ZK; Hu CH; Shan MJ; Wang DY; Yu X
    J Comput Biol; 2020 Jan; 27(1):55-68. PubMed ID: 31424286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatics analysis of gene expression profile data to screen key genes involved in intracranial aneurysms.
    Guo T; Hou D; Yu D
    Mol Med Rep; 2019 Nov; 20(5):4415-4424. PubMed ID: 31545495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening key genes and signaling pathways in colorectal cancer by integrated bioinformatics analysis.
    Yu C; Chen F; Jiang J; Zhang H; Zhou M
    Mol Med Rep; 2019 Aug; 20(2):1259-1269. PubMed ID: 31173250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.