BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34336782)

  • 1. Construction of T7-Like Expression System in
    Liang T; Sun J; Ju S; Su S; Yang L; Wu J
    Front Chem; 2021; 9():664967. PubMed ID: 34336782
    [No Abstract]   [Full Text] [Related]  

  • 2. Efficient heterologous expression of nicotinate dehydrogenase in Comamonas testosteroni CNB-2 with transcriptional, folding enhancement strategy.
    Lu ZH; Yang LR; Wu JP
    Enzyme Microb Technol; 2020 Mar; 134():109478. PubMed ID: 32044025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Transcriptional and Translational Hindrances in a Modular T7RNAP Expression System in Engineered
    Beentjes M; Ortega-Arbulú AS; Löwe H; Pflüger-Grau K; Kremling A
    ACS Synth Biol; 2022 Dec; 11(12):3939-3953. PubMed ID: 36370089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of genomic islands in the Pseudomonas putida KT2440 genome can create an optimal chassis for synthetic biology applications.
    Liang P; Zhang Y; Xu B; Zhao Y; Liu X; Gao W; Ma T; Yang C; Wang S; Liu R
    Microb Cell Fact; 2020 Mar; 19(1):70. PubMed ID: 32188438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system.
    Sun J; Wang Q; Jiang Y; Wen Z; Yang L; Wu J; Yang S
    Microb Cell Fact; 2018 Mar; 17(1):41. PubMed ID: 29534717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR interference-mediated gene regulation in Pseudomonas putida KT2440.
    Kim SK; Yoon PK; Kim SJ; Woo SG; Rha E; Lee H; Yeom SJ; Kim H; Lee DH; Lee SG
    Microb Biotechnol; 2020 Jan; 13(1):210-221. PubMed ID: 30793496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient production of soluble recombinant single chain Fv fragments by a Pseudomonas putida strain KT2440 cell factory.
    Dammeyer T; Steinwand M; Krüger SC; Dübel S; Hust M; Timmis KN
    Microb Cell Fact; 2011 Feb; 10():11. PubMed ID: 21338491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of wild-type KT2440 and genome-reduced EM42 Pseudomonas putida strains for muconate production from aromatic compounds and glucose.
    Amendola CR; Cordell WT; Kneucker CM; Szostkiewicz CJ; Ingraham MA; Monninger M; Wilton R; Pfleger BF; Salvachúa D; Johnson CW; Beckham GT
    Metab Eng; 2024 Jan; 81():88-99. PubMed ID: 38000549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida.
    Cook TB; Rand JM; Nurani W; Courtney DK; Liu SA; Pfleger BF
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):517-527. PubMed ID: 29299733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome reduction boosts heterologous gene expression in Pseudomonas putida.
    Lieder S; Nikel PI; de Lorenzo V; Takors R
    Microb Cell Fact; 2015 Feb; 14():23. PubMed ID: 25890048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a high efficiency integration system and promoter library for rapid modification of
    Elmore JR; Furches A; Wolff GN; Gorday K; Guss AM
    Metab Eng Commun; 2017 Dec; 5():1-8. PubMed ID: 29188179
    [No Abstract]   [Full Text] [Related]  

  • 12. CRISPR-Assisted Multiplex Base Editing System in
    Sun J; Lu LB; Liang TX; Yang LR; Wu JP
    Front Bioeng Biotechnol; 2020; 8():905. PubMed ID: 32850749
    [No Abstract]   [Full Text] [Related]  

  • 13. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing.
    Wu Z; Chen Z; Gao X; Li J; Shang G
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2783-2795. PubMed ID: 30762073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Green Light-Regulated T7 RNA Polymerase Gene Expression System for Cyanobacteria.
    Shono C; Ariyanti D; Abe K; Sakai Y; Sakamoto I; Tsukakoshi K; Sode K; Ikebukuro K
    Mar Biotechnol (NY); 2021 Feb; 23(1):31-38. PubMed ID: 32979137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an efficient pathway construction strategy for rapid evolution of the biodegradation capacity of Pseudomonas putida KT2440 and its application in bioremediation.
    Zhao Y; Che Y; Zhang F; Wang J; Gao W; Zhang T; Yang C
    Sci Total Environ; 2021 Mar; 761():143239. PubMed ID: 33158512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of synthetic T7 RNA polymerase expression systems.
    Kar S; Ellington AD
    Methods; 2018 Jul; 143():110-120. PubMed ID: 29518499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440.
    Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L
    Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression.
    Martínez-García E; Nikel PI; Aparicio T; de Lorenzo V
    Microb Cell Fact; 2014 Nov; 13():159. PubMed ID: 25384394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, expression and functional analysis of nicotinate dehydrogenase gene cluster from Comamonas testosteroni JA1 that can hydroxylate 3-cyanopyridine.
    Yang Y; Chen T; Ma P; Shang G; Dai Y; Yuan S
    Biodegradation; 2010 Jul; 21(4):593-602. PubMed ID: 20119845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of genetic tools for heterologous protein expression in a pentose-utilizing environmental isolate of Pseudomonas putida.
    Gauttam R; Eng T; Zhao Z; Ul Ain Rana Q; Simmons BA; Yoshikuni Y; Mukhopadhyay A; Singer SW
    Microb Biotechnol; 2023 Mar; 16(3):645-661. PubMed ID: 36691869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.