These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34337200)

  • 1. Dissipation Mechanisms for Fluids and Objects in Relative Motion Described by the Navier-Stokes Equation.
    Standnes DC
    ACS Omega; 2021 Jul; 6(29):18598-18609. PubMed ID: 34337200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled motion of microscale and nanoscale elastic objects in a viscous fluid.
    Paul MR; Clark MT; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043012. PubMed ID: 24229281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion in a viscous compressible fluid.
    Felderhof BU
    J Chem Phys; 2005 Nov; 123(18):184903. PubMed ID: 16292935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid mechanics in fluids at rest.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016307. PubMed ID: 23005525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The thermal fluctuations of diluted emulsion.
    Tchesskaya TY; Zatovsky AV
    Adv Colloid Interface Sci; 2004 May; 108-109():23-7. PubMed ID: 15072925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel.
    Richter C; Kotz F; Giselbrecht S; Helmer D; Rapp BE
    Biomed Microdevices; 2016 Jun; 18(3):52. PubMed ID: 27233665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angular-momentum conservation in discretization of the Navier-Stokes equation for viscous fluids.
    Noguchi H
    Phys Rev E; 2019 Feb; 99(2-1):023307. PubMed ID: 30934227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions.
    Ahuja VR; van der Gucht J; Briels WJ
    J Chem Phys; 2018 Jan; 148(3):034902. PubMed ID: 29352779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of the inertial deviation from Darcy's law: An investigation from a microscopic flow analysis on two-dimensional model structures.
    Agnaou M; Lasseux D; Ahmadi A
    Phys Rev E; 2017 Oct; 96(4-1):043105. PubMed ID: 29347623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Navier-Stokes Equations for Low-Temperature One-Dimensional Quantum Fluids.
    Urichuk A; Scopa S; De Nardis J
    Phys Rev Lett; 2024 Jun; 132(24):243402. PubMed ID: 38949328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore-scale visualization and characterization of viscous dissipation in porous media.
    Roman S; Soulaine C; Kovscek AR
    J Colloid Interface Sci; 2020 Jan; 558():269-279. PubMed ID: 31593860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brownian motion of finite-inertia particles in a simple shear flow.
    Drossinos Y; Reeks MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031113. PubMed ID: 15903412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brownian motion of droplets induced by thermal noise.
    Zhang H; Wang F; Ratke L; Nestler B
    Phys Rev E; 2024 Feb; 109(2-1):024208. PubMed ID: 38491665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid flow characteristics within an oscillating lower spherical surface and a stationary concentric upper surface for application to the artificial hip joint.
    Tso CP; Hor CH; Chen GM; Kok CK
    Heliyon; 2018 Dec; 4(12):e01085. PubMed ID: 30627676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effective temperature for the thermal fluctuations in hot Brownian motion.
    Srivastava M; Chakraborty D
    J Chem Phys; 2018 May; 148(20):204902. PubMed ID: 29865851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed motion of spheres induced by unbiased driving forces in viscous fluids beyond the Stokes' law regime.
    Casado-Pascual J
    Phys Rev E; 2018 Mar; 97(3-1):032219. PubMed ID: 29776079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On axial temperature gradients due to large pressure drops in dense fluid chromatography.
    Colgate SO; Berger TA
    J Chromatogr A; 2015 Mar; 1385():94-102. PubMed ID: 25662064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forces and stresses acting on fusion pore membrane during secretion.
    Tajparast M; Glavinović MI
    Biochim Biophys Acta; 2009 May; 1788(5):1009-23. PubMed ID: 19366587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized Newtonian fluid flow in porous media.
    Bowers CA; Miller CT
    Phys Rev Fluids; 2021 Dec; 6(12):. PubMed ID: 36601019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency velocity correlation spectrum of fluid in a rectangular microcapillary.
    Fornés JA; de Zárate JM
    Langmuir; 2007 Nov; 23(23):11917-23. PubMed ID: 17939698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.