These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 34337213)
1. Sodium/Lithium-Ion Transfer Reaction at the Interface between Low-Crystallized Carbon Nanosphere Electrodes and Organic Electrolytes. Kondo Y; Fukutsuka T; Yokoyama Y; Miyahara Y; Miyazaki K; Abe T ACS Omega; 2021 Jul; 6(29):18737-18744. PubMed ID: 34337213 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film. Yamada Y; Iriyama Y; Abe T; Ogumi Z Langmuir; 2009 Nov; 25(21):12766-70. PubMed ID: 19856995 [TBL] [Abstract][Full Text] [Related]
3. Anion effects on the solvation structure and properties of imide lithium salt-based electrolytes. Wang L; Luo Z; Xu H; Piao N; Chen Z; Tian G; He X RSC Adv; 2019 Dec; 9(71):41837-41846. PubMed ID: 35541581 [TBL] [Abstract][Full Text] [Related]
4. Study on Ion-Conducting Properties of Ionic Liquid Containing Carbonate Electrolytes Against Carbon Electrode. Choi BR; Park SJ; Kim S J Nanosci Nanotechnol; 2016 Mar; 16(3):2765-8. PubMed ID: 27455705 [TBL] [Abstract][Full Text] [Related]
5. Lithium Ion Coupled Electron-Transfer Rates in Superconcentrated Electrolytes: Exploring the Bottlenecks for Fast Charge-Transfer Rates with LiMn Nikitina VA; Zakharkin MV; Vassiliev SY; Yashina LV; Antipov EV; Stevenson KJ Langmuir; 2017 Sep; 33(37):9378-9389. PubMed ID: 28636393 [TBL] [Abstract][Full Text] [Related]
6. Tale of a "Non-interacting" Additive in a Lithium-Ion Electrolyte: Effect on Ionic Speciation and Electrochemical Properties. Rushing JC; Stern CM; Elgrishi N; Kuroda DG J Phys Chem C Nanomater Interfaces; 2022 Feb; 126(4):2141-2150. PubMed ID: 35145574 [TBL] [Abstract][Full Text] [Related]
7. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
8. Lithium ion phase-transfer reaction at the interface between the lithium manganese oxide electrode and the nonaqueous electrolyte. Kobayashi S; Uchimoto Y J Phys Chem B; 2005 Jul; 109(27):13322-6. PubMed ID: 16852662 [TBL] [Abstract][Full Text] [Related]
9. Charge-Transfer Kinetics of The Solid-Electrolyte Interphase on Li Nasara RN; Ma W; Kondo Y; Miyazaki K; Miyahara Y; Fukutsuka T; Lin CA; Lin SK; Abe T ChemSusChem; 2020 Aug; 13(16):4041-4050. PubMed ID: 32666624 [TBL] [Abstract][Full Text] [Related]
10. Improvement of Electrochemical Stability Using the Eutectic Composition of a Ternary Molten Salt System for Highly Concentrated Electrolytes for Na-Ion Batteries. Hwang J; Sivasengaran AN; Yang H; Yamamoto H; Takeuchi T; Matsumoto K; Hagiwara R ACS Appl Mater Interfaces; 2021 Jan; 13(2):2538-2546. PubMed ID: 33400498 [TBL] [Abstract][Full Text] [Related]
11. Fluorophosphate-Based Nonflammable Concentrated Electrolytes with a Designed Lithium-Ion-Ordered Structure: Relationship between the Bulk Electrolyte and Electrode Interface Structures. Sawayama S; Morinaga A; Mimura H; Morita M; Katayama Y; Fujii K ACS Appl Mater Interfaces; 2021 Feb; 13(5):6201-6207. PubMed ID: 33502162 [TBL] [Abstract][Full Text] [Related]
12. A novel approach to ligand-exchange rates applied to lithium-ion battery and sodium-ion battery electrolytes. Åvall G; Johansson P J Chem Phys; 2020 Jun; 152(23):234104. PubMed ID: 32571038 [TBL] [Abstract][Full Text] [Related]
13. Glyoxylic-Acetal-Based Electrolytes for Sodium-Ion Batteries and Sodium-Ion Capacitors. Leibing C; Leistenschneider D; Neumann C; Oschatz M; Turchanin A; Balducci A ChemSusChem; 2023 Jul; 16(13):e202300161. PubMed ID: 36946866 [TBL] [Abstract][Full Text] [Related]
14. Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4. Rock SE; Wu L; Crain DJ; Krishnan S; Roy D ACS Appl Mater Interfaces; 2013 Mar; 5(6):2075-84. PubMed ID: 23432452 [TBL] [Abstract][Full Text] [Related]
15. A structural and electrochemical study of lithium-ion battery electrolytes using an ethylene sulfite solvent: from dilute to concentrated solutions. Suzuki K; Sawayama S; Deguchi Y; Sai R; Han J; Fujii K Phys Chem Chem Phys; 2022 Nov; 24(44):27321-27327. PubMed ID: 36326032 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na(0.7)CoO2. Bhide A; Hofmann J; Dürr AK; Janek J; Adelhelm P Phys Chem Chem Phys; 2014 Feb; 16(5):1987-98. PubMed ID: 24336408 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Electrochemical Stability of Molten Li Salt Hydrate Electrolytes by the Addition of Divalent Cations. Kondou S; Nozaki E; Terada S; Thomas ML; Ueno K; Umebayashi Y; Dokko K; Watanabe M J Phys Chem C Nanomater Interfaces; 2018 Sep; 122(35):20167-20175. PubMed ID: 30220955 [TBL] [Abstract][Full Text] [Related]
18. Stable Cycle Performance of a Phosphorus Negative Electrode in Lithium-Ion Batteries Derived from Ionic Liquid Electrolytes. Kaushik S; Matsumoto K; Hagiwara R ACS Appl Mater Interfaces; 2021 Mar; 13(9):10891-10901. PubMed ID: 33630586 [TBL] [Abstract][Full Text] [Related]
19. Investigation of Ion-Solvent Interactions in Nonaqueous Electrolytes Using in Situ Liquid SIMS. Zhang Y; Su M; Yu X; Zhou Y; Wang J; Cao R; Xu W; Wang C; Baer DR; Borodin O; Xu K; Wang Y; Wang XL; Xu Z; Wang F; Zhu Z Anal Chem; 2018 Mar; 90(5):3341-3348. PubMed ID: 29405699 [TBL] [Abstract][Full Text] [Related]
20. Electrolyte Mixtures Based on Ethylene Carbonate and Dimethyl Sulfone for Li-Ion Batteries with Improved Safety Characteristics. Hofmann A; Migeot M; Thißen E; Schulz M; Heinzmann R; Indris S; Bergfeldt T; Lei B; Ziebert C; Hanemann T ChemSusChem; 2015 Jun; 8(11):1892-900. PubMed ID: 25950145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]