These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34337226)

  • 41. Effect of a Perforated Polyethylene Material on Propane-Air Explosion in a Confined Space.
    Qiao Z; Ma H; Yi L
    ACS Omega; 2022 Jul; 7(28):24746-24756. PubMed ID: 35874211
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Study on Explosion Characteristics and Mechanism of Electrostatic Spray Powder.
    Qin X; Zhang Y; Shi J; Wei X
    ACS Omega; 2024 Apr; 9(17):19645-19656. PubMed ID: 38708279
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.
    Chunmiao Y; Amyotte PR; Hossain MN; Li C
    J Hazard Mater; 2014 Jun; 274():322-30. PubMed ID: 24797905
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of diethyl ether and ethanol as an oxygenated additive on Calophyllum inophyllum biodiesel in CI engine.
    Tamilvanan A; Balamurugan K; Ashok B; Selvakumar P; Dhamotharan S; Bharathiraja M; Karthickeyan V
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):33880-33898. PubMed ID: 32876820
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of dust dispersibility on the suppressant enhanced explosion parameter (SEEP) in flame propagation of Al dust clouds.
    Bu Y; Amyotte P; Li C; Yuan W; Yuan C; Li G
    J Hazard Mater; 2021 Feb; 404(Pt B):124119. PubMed ID: 33075625
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibition of aluminum dust explosion by NaHCO
    Jiang H; Bi M; Gao W; Gan B; Zhang D; Zhang Q
    J Hazard Mater; 2018 Feb; 344():902-912. PubMed ID: 29195101
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy.
    Pang L; Wang C; Han M; Xu Z
    J Hazard Mater; 2015 Dec; 299():174-80. PubMed ID: 26124063
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Suppression mechanism of Al dust explosion by melamine polyphosphate and melamine cyanurate.
    Jiang H; Bi M; Gao W
    J Hazard Mater; 2020 Mar; 386():121648. PubMed ID: 31740308
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental investigation of the inerting effect of crystalline II type Ammonium Polyphosphate on explosion characteristics of micron-size Acrylates Copolymer dust.
    Yu Y; Li Y; Zhang Q; Ni W; Jiang J
    J Hazard Mater; 2018 Feb; 344():558-565. PubMed ID: 29102638
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Floor dust erosion during early stages of coal dust explosion development.
    Harris ML; Sapko MJ
    Int J Min Sci Technol; 2019 Dec; 29(6):825-830. PubMed ID: 31911844
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A model to assess dust explosion occurrence probability.
    Hassan J; Khan F; Amyotte P; Ferdous R
    J Hazard Mater; 2014 Mar; 268():140-9. PubMed ID: 24486616
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Potential Explosion Hazard of Carbonaceous Nanoparticles: Screening of Allotropes.
    Turkevich LA; Fernback J; Dastidar AG; Osterberg P
    Combust Flame; 2016 May; 167():218-227. PubMed ID: 27468178
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation on minimum ignition energy of mixtures of α-pinene-benzene/air.
    Coudour B; Chetehouna K; Rudz S; Gillard P; Garo JP
    J Hazard Mater; 2015; 283():507-11. PubMed ID: 25464289
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures.
    Addai EK; Gabel D; Krause U
    J Hazard Mater; 2016 Apr; 307():302-11. PubMed ID: 26799221
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture.
    Zeng W; Ma H; Liang Y; Hu E
    J Adv Res; 2015 Mar; 6(2):189-201. PubMed ID: 25750753
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ignition hazard of non-metallic dust clouds exposed to hotspots versus electrical sparks.
    Bu Y; Yuan C; Amyotte P; Li C; Cai J; Li G
    J Hazard Mater; 2019 Mar; 365():895-904. PubMed ID: 30497043
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The quantitative studies on gas explosion suppression by an inert rock dust deposit.
    Song Y; Zhang Q
    J Hazard Mater; 2018 Jul; 353():62-69. PubMed ID: 29635175
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Evaluation of cardiac and myocardial inotropism and lusitropism using half-logistic curve-fitting].
    Mizuno J; Morita S; Otsuji M; Hanaoka K; Kurihara S
    Masui; 2010 Apr; 59(4):422-31. PubMed ID: 20420127
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Protecting Safety During Dust Fires and Dust Explosions - The Example of the Formosa Fun Coast Water Park Accident].
    Hsieh MH; Wu JW; Li YC; Tang JS; Hsieh CC
    Hu Li Za Zhi; 2016 Feb; 63(1):5-11. PubMed ID: 26813056
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Experimental study on explosion characteristics of ethanol gasoline-air mixture and its mitigation using heptafluoropropane.
    Li G; Wang X; Xu H; Liu Y; Zhang H
    J Hazard Mater; 2019 Oct; 378():120711. PubMed ID: 31202070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.