These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34337253)

  • 1. Improving the Electrochemical Properties of Carbon Paper as Cathodes for Microfluidic Fuel Cells by the Electrochemical Activation in Different Solutions.
    Liu C; Sun C; Gao Y; Lan W; Chen S
    ACS Omega; 2021 Jul; 6(29):19153-19161. PubMed ID: 34337253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of nickel-based layered double hydroxide (LDH) and their adsorption on carbon felt fibres: application as low cost cathode catalyst in microbial fuel cell (MFC).
    Djellali M; Kameche M; Kebaili H; Bouhent MM; Benhamou A
    Environ Technol; 2021 Jan; 42(3):492-504. PubMed ID: 31223060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Power Density Direct Formate Microfluidic Fuel Cells with the Different Catalyst-Free Oxidants.
    Liu C; Gao Y; Liu L; Sun C; Jiang P; Liu J
    ACS Omega; 2022 Aug; 7(32):28646-28657. PubMed ID: 35990452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tubular membrane cathodes for scalable power generation in microbial fuel cells.
    Zuo Y; Cheng S; Call D; Logan BE
    Environ Sci Technol; 2007 May; 41(9):3347-53. PubMed ID: 17539548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H; Logan BE
    Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black.
    Zhang X; Xia X; Ivanov I; Huang X; Logan BE
    Environ Sci Technol; 2014; 48(3):2075-81. PubMed ID: 24422458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells.
    Xia X; Tokash JC; Zhang F; Liang P; Huang X; Logan BE
    Environ Sci Technol; 2013 Feb; 47(4):2085-91. PubMed ID: 23360098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges and constraints of using oxygen cathodes in microbial fuel cells.
    Zhao F; Harnisch F; Schröder U; Scholz F; Bogdanoff P; Herrmann I
    Environ Sci Technol; 2006 Sep; 40(17):5193-9. PubMed ID: 16999088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS; Nerenberg R
    Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power generation by packed-bed air-cathode microbial fuel cells.
    Zhang X; Shi J; Liang P; Wei J; Huang X; Zhang C; Logan BE
    Bioresour Technol; 2013 Aug; 142():109-14. PubMed ID: 23732924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cathode performance as a factor in electricity generation in microbial fuel cells.
    Oh S; Min B; Logan BE
    Environ Sci Technol; 2004 Sep; 38(18):4900-4. PubMed ID: 15487802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic direct formate fuel cell on paper.
    Copenhaver TS; Purohit KH; Domalaon K; Pham L; Burgess BJ; Manorothkul N; Galvan V; Sotez S; Gomez FA; Haan JL
    Electrophoresis; 2015 Aug; 36(16):1825-9. PubMed ID: 25546700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced cathode performance of a rGO-V
    Mahalingam S; Ayyaru S; Ahn YH
    Dalton Trans; 2018 Nov; 47(46):16777-16788. PubMed ID: 30427338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved alkaline direct formate paper microfluidic fuel cell.
    Galvan V; Domalaon K; Tang C; Sotez S; Mendez A; Jalali-Heravi M; Purohit K; Pham L; Haan J; Gomez FA
    Electrophoresis; 2016 Feb; 37(3):504-10. PubMed ID: 26572774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Power generation in MFCs with architectures based on tubular cathodes or fully tubular reactors.
    Zuo Y; Logan BE
    Water Sci Technol; 2011; 64(11):2253-8. PubMed ID: 22156130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells.
    Xia X; Zhang F; Zhang X; Liang P; Huang X; Logan BE
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7862-6. PubMed ID: 23902951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon-Supported Zirconium Oxide as a Cathode for Microbial Fuel Cell Applications.
    Mecheri B; Iannaci A; D'Epifanio A; Mauri A; Licoccia S
    Chempluschem; 2016 Jan; 81(1):80-85. PubMed ID: 31968730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of carbon felt anodes using double-oxidant HNO
    Zhao Y; Ma Y; Li T; Dong Z; Wang Y
    RSC Adv; 2018 Jan; 8(4):2059-2064. PubMed ID: 35542616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical surface modification of carbon mesh anode to improve the performance of air-cathode microbial fuel cells.
    Luo J; Chi M; Wang H; He H; Zhou M
    Bioprocess Biosyst Eng; 2013 Dec; 36(12):1889-96. PubMed ID: 23670635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.