These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34337856)

  • 1. Understanding Electrical Conduction and Nanopore Formation During Controlled Breakdown.
    Fried JP; Swett JL; Nadappuram BP; Fedosyuk A; Sousa PM; Briggs DP; Ivanov AP; Edel JB; Mol JA; Yates JR
    Small; 2021 Sep; 17(37):e2102543. PubMed ID: 34337856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast Fabrication Nanopores on a PMMA Membrane by a Local High Electric Field Controlled Breakdown.
    Fang S; Zeng D; He S; Li Y; Pang Z; Wang Y; Liang L; Weng T; Xie W; Wang D
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Biomolecules Using Solid-State Nanopores Fabricated by Controlled Dielectric Breakdown.
    Cheng P; Zhao C; Pan Q; Xiong Z; Chen Q; Miao X; He Y
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown.
    Bello J; Shim J
    Biomed Microdevices; 2018 Apr; 20(2):38. PubMed ID: 29680876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis.
    Briggs K; Kwok H; Tabard-Cossa V
    Small; 2014 May; 10(10):2077-86. PubMed ID: 24585682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopore fabrication by controlled dielectric breakdown.
    Kwok H; Briggs K; Tabard-Cossa V
    PLoS One; 2014; 9(3):e92880. PubMed ID: 24658537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanopore Fabrication via Transient High Electric Field Controlled Breakdown and Detection of Single RNA Molecules.
    Yin B; Fang S; Zhou D; Liang L; Wang L; Wang Z; Wang D; Yuan J
    ACS Appl Bio Mater; 2020 Sep; 3(9):6368-6375. PubMed ID: 35021767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules.
    Yanagi I; Akahori R; Takeda KI
    Sci Rep; 2019 Sep; 9(1):13143. PubMed ID: 31511597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conductance-based profiling of nanopores: Accommodating fabrication irregularities.
    Bandara YMNDY; Nichols JW; Iroshika Karawdeniya B; Dwyer JR
    Electrophoresis; 2018 Feb; 39(4):626-634. PubMed ID: 29131359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Area Four-Channel Controlled Dielectric Breakdown System Design for Point-of-Care Applications.
    Hong J; Oh Y; Choi H; Kim J
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown.
    Ying C; Houghtaling J; Eggenberger OM; Guha A; Nirmalraj P; Awasthi S; Tian J; Mayer M
    ACS Nano; 2018 Nov; 12(11):11458-11470. PubMed ID: 30335956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of multiple nanopores in a SiN
    Wang Y; Ying C; Zhou W; de Vreede L; Liu Z; Tian J
    Sci Rep; 2018 Jan; 8(1):1234. PubMed ID: 29352158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown.
    Tahvildari R; Beamish E; Tabard-Cossa V; Godin M
    Lab Chip; 2015 Mar; 15(6):1407-11. PubMed ID: 25631885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of DNA Through Solid-state Nanopores Fabricated by Controlled Dielectric Breakdown.
    Fujinami Tanimoto IM; Zhang J; Cressiot B; Le Pioufle B; Bacri L; Pelta J
    Chem Asian J; 2022 Dec; 17(24):e202200888. PubMed ID: 36321866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown.
    Pud S; Verschueren D; Vukovic N; Plesa C; Jonsson MP; Dekker C
    Nano Lett; 2015 Oct; 15(10):7112-7. PubMed ID: 26333767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High fidelity moving Z-score based controlled breakdown fabrication of solid-state nanopore.
    Roshan KA; Tang Z; Guan W
    Nanotechnology; 2019 Mar; 30(9):095502. PubMed ID: 30523901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.
    Uddin A; Yemenicioglu S; Chen CH; Corigliano E; Milaninia K; Theogarajan L
    Nanotechnology; 2013 Apr; 24(15):155501. PubMed ID: 23519330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prevention of Dielectric Breakdown of Nanopore Membranes by Charge Neutralization.
    Matsui K; Yanagi I; Goto Y; Takeda K
    Sci Rep; 2015 Dec; 5():17819. PubMed ID: 26634995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical Model for Rapid and Accurate Determination of Nanopore Size via Conductance Measurement.
    Wen C; Zhang Z; Zhang SL
    ACS Sens; 2017 Oct; 2(10):1523-1530. PubMed ID: 28974095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution.
    Briggs K; Charron M; Kwok H; Le T; Chahal S; Bustamante J; Waugh M; Tabard-Cossa V
    Nanotechnology; 2015 Feb; 26(8):084004. PubMed ID: 25648336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.