These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 34338365)
1. Quantitative In Situ Visualization of Thermal Effects on the Formation of Gold Nanocrystals in Solution. Khelfa A; Nelayah J; Amara H; Wang G; Ricolleau C; Alloyeau D Adv Mater; 2021 Sep; 33(38):e2102514. PubMed ID: 34338365 [TBL] [Abstract][Full Text] [Related]
2. Studying the Effects of Temperature on the Nucleation and Growth of Nanoparticles by Liquid-Cell Transmission Electron Microscopy. Khelfa A; Nelayah J; Wang G; Ricolleau C; Alloyeau D J Vis Exp; 2021 Feb; (168):. PubMed ID: 33682852 [TBL] [Abstract][Full Text] [Related]
3. Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with Wang M; Leff AC; Li Y; Woehl TJ ACS Nano; 2021 Feb; 15(2):2578-2588. PubMed ID: 33496576 [TBL] [Abstract][Full Text] [Related]
4. Real-Time Electron Microscopy of Nanocrystal Synthesis, Transformations, and Self-Assembly in Solution. Sutter P; Sutter E Acc Chem Res; 2021 Jan; 54(1):11-21. PubMed ID: 33315389 [TBL] [Abstract][Full Text] [Related]
5. Exploring the Formation of Symmetric Gold Nanostars by Liquid-Cell Transmission Electron Microscopy. Ahmad N; Wang G; Nelayah J; Ricolleau C; Alloyeau D Nano Lett; 2017 Jul; 17(7):4194-4201. PubMed ID: 28628329 [TBL] [Abstract][Full Text] [Related]
6. Size-controlled nanocrystals reveal spatial dependence and severity of nanoparticle coalescence and Ostwald ripening in sintering phenomena. Goodman ED; Carlson EZ; Dietze EM; Tahsini N; Johnson A; Aitbekova A; Nguyen Taylor T; Plessow PN; Cargnello M Nanoscale; 2021 Jan; 13(2):930-938. PubMed ID: 33367382 [TBL] [Abstract][Full Text] [Related]
7. Temperature Dependent Nanochemistry and Growth Kinetics Using Liquid Cell Transmission Electron Microscopy. Lee S; Schneider NM; Tan SF; Ross FM ACS Nano; 2023 Mar; 17(6):5609-5619. PubMed ID: 36881385 [TBL] [Abstract][Full Text] [Related]
8. Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy. Alloyeau D; Dachraoui W; Javed Y; Belkahla H; Wang G; Lecoq H; Ammar S; Ersen O; Wisnet A; Gazeau F; Ricolleau C Nano Lett; 2015 Apr; 15(4):2574-81. PubMed ID: 25738307 [TBL] [Abstract][Full Text] [Related]
9. Radiolysis-Driven Evolution of Gold Nanostructures - Model Verification by Scale Bridging In Situ Liquid-Phase Transmission Electron Microscopy and X-Ray Diffraction. Fritsch B; Zech TS; Bruns MP; Körner A; Khadivianazar S; Wu M; Zargar Talebi N; Virtanen S; Unruh T; Jank MPM; Spiecker E; Hutzler A Adv Sci (Weinh); 2022 Sep; 9(25):e2202803. PubMed ID: 35780494 [TBL] [Abstract][Full Text] [Related]
10. Visualization of Colloidal Nanocrystal Formation and Electrode-Electrolyte Interfaces in Liquids Using TEM. Zeng Z; Zheng W; Zheng H Acc Chem Res; 2017 Aug; 50(8):1808-1817. PubMed ID: 28782932 [TBL] [Abstract][Full Text] [Related]
11. Direct observation of aggregative nanoparticle growth: kinetic modeling of the size distribution and growth rate. Woehl TJ; Park C; Evans JE; Arslan I; Ristenpart WD; Browning ND Nano Lett; 2014 Jan; 14(1):373-8. PubMed ID: 24325680 [TBL] [Abstract][Full Text] [Related]
12. Growth of Supported Gold Nanoparticles in Aqueous Phase Studied by in Situ Transmission Electron Microscopy. Meijerink MJ; de Jong KP; Zečević J J Phys Chem C Nanomater Interfaces; 2020 Jan; 124(3):2202-2212. PubMed ID: 32010421 [TBL] [Abstract][Full Text] [Related]
13. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Kwon SG; Hyeon T Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462 [TBL] [Abstract][Full Text] [Related]
14. Nonstoichiometric nucleation and growth of multicomponent nanocrystals in solution. Min Y; Kwak J; Soon A; Jeong U Acc Chem Res; 2014 Oct; 47(10):2887-93. PubMed ID: 25133523 [TBL] [Abstract][Full Text] [Related]
15. Intrinsic focusing of the particle size distribution in colloids containing nanocrystals of two different crystal phases. Voss B; Haase M ACS Nano; 2013 Dec; 7(12):11242-54. PubMed ID: 24206197 [TBL] [Abstract][Full Text] [Related]
16. In Situ Liquid Cell TEM Reveals Bridge-Induced Contact and Fusion of Au Nanocrystals in Aqueous Solution. Jin B; Sushko ML; Liu Z; Jin C; Tang R Nano Lett; 2018 Oct; 18(10):6551-6556. PubMed ID: 30188138 [TBL] [Abstract][Full Text] [Related]
17. Nanoreactors for studying single nanoparticle coarsening. Chai J; Liao X; Giam LR; Mirkin CA J Am Chem Soc; 2012 Jan; 134(1):158-61. PubMed ID: 22235989 [TBL] [Abstract][Full Text] [Related]
18. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals. Shevchenko EV; Talapin DV; Schnablegger H; Kornowski A; Festin O; Svedlindh P; Haase M; Weller H J Am Chem Soc; 2003 Jul; 125(30):9090-101. PubMed ID: 15369366 [TBL] [Abstract][Full Text] [Related]
19. Metamorphoses of Cesium Lead Halide Nanocrystals. Toso S; Baranov D; Manna L Acc Chem Res; 2021 Feb; 54(3):498-508. PubMed ID: 33411494 [TBL] [Abstract][Full Text] [Related]
20. Unravelling the nucleation, growth, and faceting of magnetite-gold nanohybrids. Nalench YA; Shchetinin IV; Skorikov AS; Mogilnikov PS; Farle M; Savchenko AG; Majouga AG; Abakumov MA; Wiedwald U J Mater Chem B; 2020 May; 8(17):3886-3895. PubMed ID: 32227007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]