BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34338444)

  • 1. Ultrathin 2D Inorganic Ancient Pigment Decorated 3D-Printing Scaffold Enables Photonic Hyperthermia of Osteosarcoma in NIR-II Biowindow and Concurrently Augments Bone Regeneration.
    He C; Dong C; Yu L; Chen Y; Hao Y
    Adv Sci (Weinh); 2021 Oct; 8(19):e2101739. PubMed ID: 34338444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printed Wesselsite Nanosheets Functionalized Scaffold Facilitates NIR-II Photothermal Therapy and Vascularized Bone Regeneration.
    Yang C; Ma H; Wang Z; Younis MR; Liu C; Wu C; Luo Y; Huang P
    Adv Sci (Weinh); 2021 Oct; 8(20):e2100894. PubMed ID: 34396718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering 2D Mesoporous Silica@MXene-Integrated 3D-Printing Scaffolds for Combinatory Osteosarcoma Therapy and NO-Augmented Bone Regeneration.
    Yang Q; Yin H; Xu T; Zhu D; Yin J; Chen Y; Yu X; Gao J; Zhang C; Chen Y; Gao Y
    Small; 2020 Apr; 16(14):e1906814. PubMed ID: 32108432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of metal-organic framework nanosheets-structured scaffolds with tumor therapy and bone construction.
    Dang W; Ma B; Li B; Huan Z; Ma N; Zhu H; Chang J; Xiao Y; Wu C
    Biofabrication; 2020 Jan; 12(2):025005. PubMed ID: 31756727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IOX1 epigenetically enhanced photothermal therapy of 3D-printing silicene scaffolds against osteosarcoma with favorable bone regeneration.
    Liang Y; Wang C; Yu S; Fan Y; Jiang Y; Zhou R; Yan W; Sun Y
    Mater Today Bio; 2023 Dec; 23():100887. PubMed ID: 38144518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic nanoparticles modified-porous scaffolds for bone regeneration and photothermal therapy against tumors.
    Lu JW; Yang F; Ke QF; Xie XT; Guo YP
    Nanomedicine; 2018 Apr; 14(3):811-822. PubMed ID: 29339189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic cancer nanomedicine using the near infrared-II biowindow enabled by biocompatible titanium nitride nanoplatforms.
    Wang C; Dai C; Hu Z; Li H; Yu L; Lin H; Bai J; Chen Y
    Nanoscale Horiz; 2019 Mar; 4(2):415-425. PubMed ID: 32254094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FePSe
    Xu C; Xia Y; Zhuang P; Liu W; Mu C; Liu Z; Wang J; Chen L; Dai H; Luo Z
    Small; 2023 Sep; 19(38):e2303636. PubMed ID: 37217971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox chemistry-enabled stepwise surface dual nanoparticle engineering of 2D MXenes for tumor-sensitive
    Liu Z; Zhao M; Yu L; Peng W; Chen Y; Zhang S
    Biomater Sci; 2022 Mar; 10(6):1562-1574. PubMed ID: 35175252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional 3D-printed scaffolds eradiate orthotopic osteosarcoma and promote osteogenesis via microwave thermo-chemotherapy combined with immunotherapy.
    Ma L; Zhou J; Wu Q; Luo G; Zhao M; Zhong G; Zheng Y; Meng X; Cheng S; Zhang Y
    Biomaterials; 2023 Oct; 301():122236. PubMed ID: 37506512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nb
    Yin J; Pan S; Guo X; Gao Y; Zhu D; Yang Q; Gao J; Zhang C; Chen Y
    Nanomicro Lett; 2021 Jan; 13(1):30. PubMed ID: 34138204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Gadolinium-Integrated Tellurium Nanorods for Theory-Oriented Photonic Hyperthermia in the NIR-II Biowindow.
    Dong L; Li K; Wen D; Gao X; Feng J; Zhang H
    Small; 2020 Oct; 16(42):e2003508. PubMed ID: 32985135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic hyperthermia of malignant peripheral nerve sheath tumors at the third near-infrared biowindow.
    Gu Y; Wang Z; Wei C; Li Y; Feng W; Wang W; Chang M; Chen Y; Li Q
    Elife; 2022 Sep; 11():. PubMed ID: 36111780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic mesopore construction on 2D Nb
    Han X; Jing X; Yang D; Lin H; Wang Z; Ran H; Li P; Chen Y
    Theranostics; 2018; 8(16):4491-4508. PubMed ID: 30214634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic Mesoporous Calcium Sillicate/Chitosan Porous Scaffolds for Enhanced Bone Regeneration and Photothermal-Chemotherapy of Osteosarcoma.
    Yang F; Lu J; Ke Q; Peng X; Guo Y; Xie X
    Sci Rep; 2018 May; 8(1):7345. PubMed ID: 29743489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable FePS
    Luo T; Jiang M; Cheng Z; Lin Y; Chen Y; Zhang Z; Zhou J; Zhou W; Yu XF; Li S; Geng S; Yang H
    J Nanobiotechnology; 2023 Jul; 21(1):224. PubMed ID: 37443019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional bioactive glasses with spontaneous degradation for simultaneous osteosarcoma therapy and bone regeneration.
    Gu J; Liu X; Cui P; Yi X
    Biomater Adv; 2023 Nov; 154():213626. PubMed ID: 37722164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasmall Cu
    Hu R; Fang Y; Huo M; Yao H; Wang C; Chen Y; Wu R
    Biomaterials; 2019 Jun; 206():101-114. PubMed ID: 30927714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a triple-functional magnetic gel driving mutually-synergistic mild hyperthermia-starvation therapy for osteosarcoma treatment and augmented bone regeneration.
    Yu K; Zhou H; Xu Y; Cao Y; Zheng Y; Liang B
    J Nanobiotechnology; 2023 Jun; 21(1):201. PubMed ID: 37365598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.