These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34338664)

  • 1. Using Changes in Leaf Transmission to Investigate Chloroplast Movement in Arabidopsis thaliana.
    Königer M; Knapp A; Futami L; Kohler S
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34338664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light, genotype, and abscisic acid affect chloroplast positioning in guard cells of Arabidopsis thaliana leaves in distinct ways.
    Königer M; Jessen B; Yang R; Sittler D; Harris GC
    Photosynth Res; 2010 Sep; 105(3):213-27. PubMed ID: 20614182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plastid movement impaired 2, a new gene involved in normal blue-light-induced chloroplast movements in Arabidopsis.
    Luesse DR; DeBlasio SL; Hangarter RP
    Plant Physiol; 2006 Aug; 141(4):1328-37. PubMed ID: 16778016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabidopsis thaliana leaves with altered chloroplast numbers and chloroplast movement exhibit impaired adjustments to both low and high light.
    Königer M; Delamaide JA; Marlow ED; Harris GC
    J Exp Bot; 2008; 59(9):2285-97. PubMed ID: 18468985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green light attenuates blue-light-induced chloroplast avoidance movement in Arabidopsis and Landoltia punctata.
    Schmalstig JG; Jainandan K
    Am J Bot; 2021 Aug; 108(8):1525-1539. PubMed ID: 34458978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Induced Movements of Chloroplasts and Nuclei Are Regulated in Both Cp-Actin-Filament-Dependent and -Independent Manners in Arabidopsis thaliana.
    Suetsugu N; Higa T; Gotoh E; Wada M
    PLoS One; 2016; 11(6):e0157429. PubMed ID: 27310016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast Accumulation Response Enhances Leaf Photosynthesis and Plant Biomass Production.
    Gotoh E; Suetsugu N; Yamori W; Ishishita K; Kiyabu R; Fukuda M; Higa T; Shirouchi B; Wada M
    Plant Physiol; 2018 Nov; 178(3):1358-1369. PubMed ID: 30266749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impairment of chloroplast movement reduces growth and delays reproduction of Arabidopsis thaliana in natural and controlled conditions.
    Howard MM; Bae A; Pirani Z; Van N; Königer M
    Am J Bot; 2020 Sep; 107(9):1309-1318. PubMed ID: 32965027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blue light-induced chloroplast relocation in Arabidopsis thaliana as analyzed by microbeam irradiation.
    Kagawa T; Wada M
    Plant Cell Physiol; 2000 Jan; 41(1):84-93. PubMed ID: 10750712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of GhPHOT2 in chloroplast avoidance of Gossypium hirsutum.
    Shang B; Zang Y; Zhao X; Zhu J; Fan C; Guo X; Zhang X
    Plant Physiol Biochem; 2019 Feb; 135():51-60. PubMed ID: 30500518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-invasive, whole-plant imaging of chloroplast movement and chlorophyll fluorescence reveals photosynthetic phenotypes independent of chloroplast photorelocation defects in chloroplast division mutants.
    Dutta S; Cruz JA; Jiao Y; Chen J; Kramer DM; Osteryoung KW
    Plant J; 2015 Oct; 84(2):428-42. PubMed ID: 26332826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoprotective function of chloroplast avoidance movement: in vivo chlorophyll fluorescence study.
    Sztatelman O; Waloszek A; Banaś AK; Gabryś H
    J Plant Physiol; 2010 Jun; 167(9):709-16. PubMed ID: 20172619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of chloroplast movement, nonphotochemical quenching, and electron transport rates in light acclimation and tolerance to high light in Arabidopsis thaliana.
    Howard MM; Bae A; Königer M
    Am J Bot; 2019 Nov; 106(11):1444-1453. PubMed ID: 31647579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FKF1 Interacts with CHUP1 and Regulates Chloroplast Movement in Arabidopsis.
    Yuan N; Mendu L; Ghose K; Witte CS; Frugoli J; Mendu V
    Plants (Basel); 2023 Jan; 12(3):. PubMed ID: 36771626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue light-dependent nuclear positioning in Arabidopsis thaliana leaf cells.
    Iwabuchi K; Sakai T; Takagi S
    Plant Cell Physiol; 2007 Sep; 48(9):1291-8. PubMed ID: 17652112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actin-based mechanisms for light-dependent intracellular positioning of nuclei and chloroplasts in Arabidopsis.
    Iwabuchi K; Takagi S
    Plant Signal Behav; 2010 Aug; 5(8):1010-3. PubMed ID: 20724834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rethinking the Influence of Chloroplast Movements on Non-photochemical Quenching and Photoprotection.
    Wilson S; Ruban AV
    Plant Physiol; 2020 Jul; 183(3):1213-1223. PubMed ID: 32404415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PLASTID MOVEMENT IMPAIRED1 and PLASTID MOVEMENT IMPAIRED1-RELATED1 Mediate Photorelocation Movements of Both Chloroplasts and Nuclei.
    Suetsugu N; Higa T; Kong SG; Wada M
    Plant Physiol; 2015 Oct; 169(2):1155-67. PubMed ID: 26324877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Chloroplast Movement Analysis.
    Johansson H; Zeidler M
    Methods Mol Biol; 2016; 1398():29-35. PubMed ID: 26867613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloroplast unusual positioning1 is essential for proper chloroplast positioning.
    Oikawa K; Kasahara M; Kiyosue T; Kagawa T; Suetsugu N; Takahashi F; Kanegae T; Niwa Y; Kadota A; Wada M
    Plant Cell; 2003 Dec; 15(12):2805-15. PubMed ID: 14615600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.