BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

573 related articles for article (PubMed ID: 34339067)

  • 21. Landscape development, forest fires, and wilderness management.
    Wright HE
    Science; 1974 Nov; 186(4163):487-95. PubMed ID: 17790369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in fire behavior caused by fire exclusion and fuel build-up vary with topography in California montane forests, USA.
    Airey-Lauvaux C; Pierce AD; Skinner CN; Taylor AH
    J Environ Manage; 2022 Feb; 304():114255. PubMed ID: 34942550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vegetation structure parameters determine high burn severity likelihood in different ecosystem types: A case study in a burned Mediterranean landscape.
    Fernández-Guisuraga JM; Suárez-Seoane S; García-Llamas P; Calvo L
    J Environ Manage; 2021 Jun; 288():112462. PubMed ID: 33831636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low- and moderate-severity fire offers key insights for landscape restoration in ponderosa pine forests.
    Cannon JB; Warnick KJ; Elliott S; Briggs JS
    Ecol Appl; 2022 Mar; 32(2):e2490. PubMed ID: 34753222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Climate change induced declines in fuel moisture may turn currently fire-free Pyrenean mountain forests into fire-prone ecosystems.
    Resco de Dios V; Hedo J; Cunill Camprubí À; Thapa P; Martínez Del Castillo E; Martínez de Aragón J; Bonet JA; Balaguer-Romano R; Díaz-Sierra R; Yebra M; Boer MM
    Sci Total Environ; 2021 Nov; 797():149104. PubMed ID: 34303242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biogeographic variability in wildfire severity and post-fire vegetation recovery across the European forests via remote sensing-derived spectral metrics.
    Nolè A; Rita A; Spatola MF; Borghetti M
    Sci Total Environ; 2022 Jun; 823():153807. PubMed ID: 35150679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management.
    Marchal J; Cumming SG; McIntire EJB
    PLoS One; 2017; 12(6):e0179294. PubMed ID: 28609467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region.
    Harvey BJ; Donato DC; Turner MG
    Ecology; 2016 Sep; 97(9):2272-2282. PubMed ID: 27859087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Limitations to recovery following wildfire in dry forests of southern Colorado and northern New Mexico, USA.
    Rodman KC; Veblen TT; Chapman TB; Rother MT; Wion AP; Redmond MD
    Ecol Appl; 2020 Jan; 30(1):e02001. PubMed ID: 31518473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Climate and wildfire area burned in western U.S. ecoprovinces, 1916-2003.
    Littell JS; McKenzie D; Peterson DL; Westerling AL
    Ecol Appl; 2009 Jun; 19(4):1003-21. PubMed ID: 19544740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influences of prior wildfires on vegetation response to subsequent fire in a reburned Southwestern landscape.
    Coop JD; Parks SA; McClernan SR; Holsinger LM
    Ecol Appl; 2016 Mar; 26(2):346-54. PubMed ID: 27209778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?
    Baker WL
    PLoS One; 2015; 10(9):e0136147. PubMed ID: 26351850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The fuel-climate-fire conundrum: How will fire regimes change in temperate eucalypt forests under climate change?
    McColl-Gausden SC; Bennett LT; Clarke HG; Ababei DA; Penman TD
    Glob Chang Biol; 2022 Sep; 28(17):5211-5226. PubMed ID: 35711097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Where and why do conifer forests persist in refugia through multiple fire events?
    Downing WM; Meigs GW; Gregory MJ; Krawchuk MA
    Glob Chang Biol; 2021 Aug; 27(15):3642-3656. PubMed ID: 33896078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The magnitude and pace of photosynthetic recovery after wildfire in California ecosystems.
    Hemes KS; Norlen CA; Wang JA; Goulden ML; Field CB
    Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2201954120. PubMed ID: 37011220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Forest restoration in a time of fire: perspectives from tall, wet eucalypt forests subject to stand-replacing wildfires.
    Lindenmayer DB; Bowd EJ; Gibbons P
    Philos Trans R Soc Lond B Biol Sci; 2023 Jan; 378(1867):20210082. PubMed ID: 36373929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influences of wildfire on the forest ecosystem and climate change: A comprehensive study.
    Gajendiran K; Kandasamy S; Narayanan M
    Environ Res; 2024 Jan; 240(Pt 2):117537. PubMed ID: 37914016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fire catalyzed rapid ecological change in lowland coniferous forests of the Pacific Northwest over the past 14,000 years.
    Crausbay SD; Higuera PE; Sprugel DG; Brubaker LB
    Ecology; 2017 Sep; 98(9):2356-2369. PubMed ID: 28500791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A multi-benefit framework for funding forest management in fire-driven ecosystems across the Western U.S.
    Quesnel Seipp K; Maurer T; Elias M; Saksa P; Keske C; Oleson K; Egoh B; Cleveland R; Nyelele C; Goncalves N; Hemes K; Wyrsch P; Lewis D; Chung MG; Guo H; Conklin M; Bales R
    J Environ Manage; 2023 Oct; 344():118270. PubMed ID: 37354586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From the stand scale to the landscape scale: predicting the spatial patterns of forest regeneration after disturbance.
    Shive KL; Preisler HK; Welch KR; Safford HD; Butz RJ; O'Hara KL; Stephens SL
    Ecol Appl; 2018 Sep; 28(6):1626-1639. PubMed ID: 29809291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.