These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 3433909)
1. [Interfragmental compression of the Zespol osteosynthesis system. Experimental biomechanical studies]. Hopf T; Osthege S Z Orthop Ihre Grenzgeb; 1987; 125(5):546-52. PubMed ID: 3433909 [TBL] [Abstract][Full Text] [Related]
2. [Tensile strength of plate osteosynthesis. Comparative biomechanical study of the original autocompression plate and a functional modification using the ZESPOL principle]. Hopf T; Albert H Unfallchirurg; 1990 Mar; 93(3):100-4. PubMed ID: 2343317 [TBL] [Abstract][Full Text] [Related]
3. [Spongiosa formation in plate osteosynthesis--a comparative animal experiment study of current and auto-compression plates using the Zespol principle]. Hopf T; Mittelmeier W; Mittelmeier H Aktuelle Traumatol; 1989 Apr; 19(2):65-72. PubMed ID: 2565660 [TBL] [Abstract][Full Text] [Related]
4. Zespol. An original method of stable osteosynthesis. Ramotowski W; Granowski R Clin Orthop Relat Res; 1991 Nov; (272):67-75. PubMed ID: 1934753 [TBL] [Abstract][Full Text] [Related]
5. [Biomechanical studies of the role of the interfragmentary traction screw in plate osteosynthesis exemplified by a short oblique tibial shaft fracture]. Hopf T; Harnroongroi T Aktuelle Traumatol; 1986 Apr; 16(2):60-6. PubMed ID: 2871713 [TBL] [Abstract][Full Text] [Related]
6. [Experimental studies of the optimal plate pre-bending angle in compression osteosynthesis with reference to the plastic-elastic behavior of the osteosynthesis plate]. Krapf WP; Hopf T Z Orthop Ihre Grenzgeb; 1986; 124(5):592-8. PubMed ID: 3811484 [TBL] [Abstract][Full Text] [Related]
7. A short plate compression screw with diagonal bolts--a biomechanical evaluation performed experimentally and by numerical computation. Peleg E; Mosheiff R; Liebergall M; Mattan Y Clin Biomech (Bristol); 2006 Nov; 21(9):963-8. PubMed ID: 16893595 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical comparison of polyaxial and uniaxial locking plate fixation in a proximal tibial gap model. Cullen AB; Curtiss S; Lee MA J Orthop Trauma; 2009 Aug; 23(7):507-13. PubMed ID: 19633460 [TBL] [Abstract][Full Text] [Related]
9. [Biomechanic study on length of plate in treatment of tibial shaft fracture]. Hu X; Yang S; Xiao D; Lin B; Wang H; Xu Z; Zhao W; Zhang M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Nov; 22(11):1323-6. PubMed ID: 19068599 [TBL] [Abstract][Full Text] [Related]
10. [Early results with Zespol osteosyntheses of the leg]. Schöffauer T; Senst W; Zeumer B Beitr Orthop Traumatol; 1990 Jan; 37(1):22-7. PubMed ID: 2357203 [TBL] [Abstract][Full Text] [Related]
11. Fixation of HA-coated unicortical locking screws in a sheep gap model: a comparative biomechanical study. Moroni A; Pegreffi F; Hoang-Kim A; Tesei F; Giannini S; Wippermann B J Orthop Trauma; 2008 Jan; 22(1):37-42. PubMed ID: 18176163 [TBL] [Abstract][Full Text] [Related]
12. [Osteosynthesis for periprosthetic supracondylar fracture above a total knee arthroplasty using a locking compression plate]. Krbec M; Motycka J; Lunácek L; Dousa P Acta Chir Orthop Traumatol Cech; 2009 Dec; 76(6):473-8. PubMed ID: 20067694 [TBL] [Abstract][Full Text] [Related]
13. [Biomechanical comparative study of three types of osteosynthesis in the treatment of supra and intercondylar fractures of the humerus in adults]. Fornasiéri C; Staub C; Tourné Y; Rumelhart C; Saragaglia D Rev Chir Orthop Reparatrice Appar Mot; 1997; 83(3):237-42. PubMed ID: 9255359 [TBL] [Abstract][Full Text] [Related]
14. Transpedicular plate fixator as effective system of spine stabilisation: biomechanical characteristics. Pawłowski P; Araszkiewicz M; Topoliński T; Matewski D Arch Orthop Trauma Surg; 2008 Oct; 128(10):1127-36. PubMed ID: 18408945 [TBL] [Abstract][Full Text] [Related]
15. [An experimental study on bone potentials at fracture site with axial interfragmental gradient compression]. Zhang Y; Liu L; Shu S; Li Z; Zhong G Hua Xi Kou Qiang Yi Xue Za Zhi; 1999 Feb; 17(1):20-2. PubMed ID: 12539313 [TBL] [Abstract][Full Text] [Related]
16. Experimental spiral fractures. An in vitro biomechanical comparison of lag-screw fixation to plate fixation. Cox LG; Dahners LE; Gilbert JA Clin Orthop Relat Res; 1989 Jun; (243):189-94. PubMed ID: 2721062 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical analysis of the percutaneous compression plate and sliding hip screw in intracapsular hip fractures: experimental assessment using synthetic and cadaver bones. Brandt E; Verdonschot N; van Vugt A; van Kampen A Injury; 2006 Oct; 37(10):979-83. PubMed ID: 16934259 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical analysis of plate osteosynthesis systems for proximal humerus fractures. Lever JP; Aksenov SA; Zdero R; Ahn H; McKee MD; Schemitsch EH J Orthop Trauma; 2008 Jan; 22(1):23-9. PubMed ID: 18176161 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: Sliding Hip Screw and Percutaneous Compression Plate. Krischak GD; Augat P; Beck A; Arand M; Baier B; Blakytny R; Gebhard F; Claes L Clin Biomech (Bristol); 2007 Dec; 22(10):1112-8. PubMed ID: 17900766 [TBL] [Abstract][Full Text] [Related]