BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34339163)

  • 1. Chemo-optogenetic Protein Translocation System Using a Photoactivatable Self-Localizing Ligand.
    Yoshii T; Oki C; Watahiki R; Nakamura A; Tahara K; Kuwata K; Furuta T; Tsukiji S
    ACS Chem Biol; 2021 Aug; 16(8):1557-1565. PubMed ID: 34339163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A photoactivatable self-localizing ligand with improved photosensitivity for chemo-optogenetic control of protein localization in living cells.
    Yoshii T; Oki C; Tsukiji S
    Bioorg Med Chem Lett; 2022 Sep; 72():128865. PubMed ID: 35738351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designer Palmitoylation Motif-Based Self-Localizing Ligand for Sustained Control of Protein Localization in Living Cells and
    Nakamura A; Oki C; Sawada S; Yoshii T; Kuwata K; Rudd AK; Devaraj NK; Noma K; Tsukiji S
    ACS Chem Biol; 2020 Apr; 15(4):837-843. PubMed ID: 32182034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemogenetic Control of Protein Localization and Mammalian Cell Signaling by SLIPT.
    Suzuki S; Hatano Y; Yoshii T; Tsukiji S
    Methods Mol Biol; 2021; 2312():237-251. PubMed ID: 34228294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemogenetic Control of Protein Anchoring to Endomembranes in Living Cells with Lipid-Tethered Small Molecules.
    Nakamura A; Katahira R; Sawada S; Shinoda E; Kuwata K; Yoshii T; Tsukiji S
    Biochemistry; 2020 Jan; 59(2):205-211. PubMed ID: 31578861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multidirectional Activity Control of Cellular Processes by a Versatile Chemo-optogenetic Approach.
    Chen X; Venkatachalapathy M; Dehmelt L; Wu YW
    Angew Chem Int Ed Engl; 2018 Sep; 57(37):11993-11997. PubMed ID: 30048030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Orthogonal, Plasma Membrane-Specific SLIPT Systems for Multiplexed Chemical Control of Signaling Pathways in Living Single Cells.
    Nakamura A; Oki C; Kato K; Fujinuma S; Maryu G; Kuwata K; Yoshii T; Matsuda M; Aoki K; Tsukiji S
    ACS Chem Biol; 2020 Apr; 15(4):1004-1015. PubMed ID: 32162909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chemogenetic platform for controlling plasma membrane signaling and synthetic signal oscillation.
    Suzuki S; Nakamura A; Hatano Y; Yoshikawa M; Yoshii T; Sawada S; Atsuta-Tsunoda K; Aoki K; Tsukiji S
    Cell Chem Biol; 2022 Sep; 29(9):1446-1464.e10. PubMed ID: 35835118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic self-localizing ligands that control the spatial location of proteins in living cells.
    Ishida M; Watanabe H; Takigawa K; Kurishita Y; Oki C; Nakamura A; Hamachi I; Tsukiji S
    J Am Chem Soc; 2013 Aug; 135(34):12684-9. PubMed ID: 23941503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible optogenetic control of protein function and localization.
    Wu DZ; Lackner RM; Aonbangkhen C; Lampson MA; Chenoweth DM
    Methods Enzymol; 2019; 624():25-45. PubMed ID: 31370933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable and Photoswitchable Chemically Induced Dimerization for Chemo-optogenetic Control of Protein and Organelle Positioning.
    Chen X; Wu YW
    Angew Chem Int Ed Engl; 2018 Jun; 57(23):6796-6799. PubMed ID: 29637703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoactivatable trimethoprim-based probes for spatiotemporal control of biological processes.
    Wu DZ; Lampson MA; Chenoweth DM
    Methods Enzymol; 2020; 638():273-294. PubMed ID: 32416918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic control of organelle transport using a photocaged chemical inducer of dimerization.
    Ballister ER; Ayloo S; Chenoweth DM; Lampson MA; Holzbaur ELF
    Curr Biol; 2015 May; 25(10):R407-R408. PubMed ID: 25989077
    [No Abstract]   [Full Text] [Related]  

  • 14. Protein Inactivation by Optogenetic Trapping in Living Cells.
    Park H; Lee S; Heo WD
    Methods Mol Biol; 2016; 1408():363-76. PubMed ID: 26965136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics.
    Valon L; Etoc F; Remorino A; di Pietro F; Morin X; Dahan M; Coppey M
    Biophys J; 2015 Nov; 109(9):1785-97. PubMed ID: 26536256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic Control of RhoA to Probe Subcellular Mechanochemical Circuitry.
    Cavanaugh KE; Oakes PW; Gardel ML
    Curr Protoc Cell Biol; 2020 Mar; 86(1):e102. PubMed ID: 32031760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic Manipulation of Mouse Oocytes.
    Akera T; Chenoweth DM; Lampson MA
    Methods Mol Biol; 2018; 1818():129-135. PubMed ID: 29961261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OpEn-Tag-A Customizable Optogenetic Toolbox To Dissect Subcellular Signaling.
    Mühlhäuser WWD; Weber W; Radziwill G
    ACS Synth Biol; 2019 Jul; 8(7):1679-1684. PubMed ID: 31185174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized iLID Membrane Anchors for Local Optogenetic Protein Recruitment.
    Natwick DE; Collins SR
    ACS Synth Biol; 2021 May; 10(5):1009-1023. PubMed ID: 33843200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical Manipulation of Subcellular Protein Translocation Using a Photoactivatable Covalent Labeling System.
    Kowada T; Arai K; Yoshimura A; Matsui T; Kikuchi K; Mizukami S
    Angew Chem Int Ed Engl; 2021 May; 60(20):11378-11383. PubMed ID: 33644979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.