These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34339599)

  • 1. Bactericidal Activity of Bulk Nanobubbles through Active Oxygen Species Generation.
    Yamaguchi M; Ma T; Tadaki D; Hirano-Iwata A; Watanabe Y; Kanetaka H; Fujimori H; Takemoto E; Niwano M
    Langmuir; 2021 Aug; ():. PubMed ID: 34339599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radical generation and bactericidal activity of nanobubbles produced by ultrasonic irradiation of carbonated water.
    Mokudai T; Kawada M; Tadaki D; Hirano-Iwata A; Kanetaka H; Fujimori H; Takemoto E; Niwano M
    Ultrason Sonochem; 2024 Feb; 103():106809. PubMed ID: 38364483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Bulk Nanobubbles Formed by Using a Porous Alumina Film with Ordered Nanopores.
    Ma T; Kimura Y; Yamamoto H; Feng X; Hirano-Iwata A; Niwano M
    J Phys Chem B; 2020 Jun; 124(24):5067-5072. PubMed ID: 32437155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of ROS Produced by Nanobubbles and Their Positive and Negative Effects on Vegetable Seed Germination.
    Liu S; Oshita S; Kawabata S; Makino Y; Yoshimoto T
    Langmuir; 2016 Nov; 32(43):11295-11302. PubMed ID: 27259095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of Oxygen Nanobubbles under Freshwater Conditions.
    Soyluoglu M; Kim D; Zaker Y; Karanfil T
    Water Res; 2021 Nov; 206():117749. PubMed ID: 34678695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: a review and future perspective.
    Babu KS; Amamcharla JK
    Crit Rev Food Sci Nutr; 2023; 63(28):9262-9281. PubMed ID: 35467989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulk nanobubbles: Production and investigation of their formation/stability mechanism.
    Michailidi ED; Bomis G; Varoutoglou A; Kyzas GZ; Mitrikas G; Mitropoulos AC; Efthimiadou EK; Favvas EP
    J Colloid Interface Sci; 2020 Mar; 564():371-380. PubMed ID: 31918204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanobubble Technologies Offer Opportunities To Improve Water Treatment.
    Atkinson AJ; Apul OG; Schneider O; Garcia-Segura S; Westerhoff P
    Acc Chem Res; 2019 May; 52(5):1196-1205. PubMed ID: 30958672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemically reactive colloidal nanobubbles by water splitting.
    Yadav G; Nirmalkar N; Ohl CD
    J Colloid Interface Sci; 2024 Jun; 663():518-531. PubMed ID: 38422977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant Activity of Hydrogen Nanobubbles in Water with Different Reactive Oxygen Species both in Vivo and in Vitro.
    Liu S; Oshita S; Thuyet DQ; Saito M; Yoshimoto T
    Langmuir; 2018 Oct; 34(39):11878-11885. PubMed ID: 30189133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bactericidal Activity of TiO
    Yamaguchi M; Abe H; Ma T; Tadaki D; Hirano-Iwata A; Kanetaka H; Watanabe Y; Niwano M
    Langmuir; 2020 Oct; 36(42):12668-12677. PubMed ID: 33105996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of Reactive Oxygen Species via Nanobubble Water Improves Radish Seed Water Absorption and the Expression of Aquaporin Genes.
    Sun X; Chen J; Fan W; Liu S; Kamruzzaman M
    Langmuir; 2022 Sep; 38(38):11724-11731. PubMed ID: 36103666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanobubble Reactivity: Evaluating Hydroxyl Radical Generation (or Lack Thereof) under Ambient Conditions.
    Chae SH; Kim MS; Kim JH; Fortner JD
    ACS ES T Eng; 2023 Oct; 3(10):1504-1510. PubMed ID: 37854075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics and Stability of Ozone Nanobubbles in Freshwater Conditions.
    Soyluoglu M; Kim D; Karanfil T
    Environ Sci Technol; 2023 Dec; 57(51):21898-21907. PubMed ID: 38085154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An antioxidation strategy based on ultra-small nanobubbles without exogenous antioxidants.
    Zheng J; Qi J; Song S; Yuan K; Zhang L; Zhao H; Lü J; Zhu B; Zhang Y; Hu J
    Sci Rep; 2023 May; 13(1):8455. PubMed ID: 37231048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free radical degradation in aqueous solution by blowing hydrogen and carbon dioxide nanobubbles.
    Fujita T; Kurokawa H; Han Z; Zhou Y; Matsui H; Ponou J; Dodbiba G; He C; Wei Y
    Sci Rep; 2021 Feb; 11(1):3068. PubMed ID: 33542381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bulk Nanobubbles Fabricated by Repeated Compression of Microbubbles.
    Jin J; Feng Z; Yang F; Gu N
    Langmuir; 2019 Mar; 35(12):4238-4245. PubMed ID: 30817886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Stabilization of a Bulk Nanobubble: A Molecular Dynamics Analysis.
    Gao Z; Wu W; Sun W; Wang B
    Langmuir; 2021 Sep; 37(38):11281-11291. PubMed ID: 34520212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative Capacity of Oxygen Nanobubbles and Their Mechanism for the Catalytic Oxidation of Ferrous Ions with Copper as a Catalyst in Sulfuric Acid Medium.
    Li T; Cui Z; Sun J; Li Q; Wang Y; Li G
    Langmuir; 2023 Jul; 39(29):10112-10121. PubMed ID: 37452782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encapsulation in Oxygen-Loaded Nanobubbles Enhances the Antimicrobial Effectiveness of Photoactivated Curcumin.
    Munir Z; Molinar C; Banche G; Argenziano M; Magnano G; Cavallo L; Mandras N; Cavalli R; Guiot C
    Int J Mol Sci; 2023 Oct; 24(21):. PubMed ID: 37958582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.