These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 34339753)
1. Genetically encoded sensors towards imaging cAMP and PKA activity in vivo. Massengill CI; Day-Cooney J; Mao T; Zhong H J Neurosci Methods; 2021 Oct; 362():109298. PubMed ID: 34339753 [TBL] [Abstract][Full Text] [Related]
2. Visualizing Protein Kinase A Activity In Head-fixed Behaving Mice Using In Vivo Two-photon Fluorescence Lifetime Imaging Microscopy. Jongbloets BC; Ma L; Mao T; Zhong H J Vis Exp; 2019 Jun; (148):. PubMed ID: 31233029 [TBL] [Abstract][Full Text] [Related]
3. A PKA activity sensor for quantitative analysis of endogenous GPCR signaling via 2-photon FRET-FLIM imaging. Chen Y; Saulnier JL; Yellen G; Sabatini BL Front Pharmacol; 2014; 5():56. PubMed ID: 24765076 [TBL] [Abstract][Full Text] [Related]
4. cAMP Biosensors Based on Genetically Encoded Fluorescent/Luminescent Proteins. Kim N; Shin S; Bae SW Biosensors (Basel); 2021 Jan; 11(2):. PubMed ID: 33572585 [TBL] [Abstract][Full Text] [Related]
5. A Highly Sensitive A-Kinase Activity Reporter for Imaging Neuromodulatory Events in Awake Mice. Ma L; Jongbloets BC; Xiong WH; Melander JB; Qin M; Lameyer TJ; Harrison MF; Zemelman BV; Mao T; Zhong H Neuron; 2018 Aug; 99(4):665-679.e5. PubMed ID: 30100256 [TBL] [Abstract][Full Text] [Related]
6. Dendritic diameter influences the rate and magnitude of hippocampal cAMP and PKA transients during β-adrenergic receptor activation. Luczak V; Blackwell KT; Abel T; Girault JA; Gervasi N Neurobiol Learn Mem; 2017 Feb; 138():10-20. PubMed ID: 27523748 [TBL] [Abstract][Full Text] [Related]
7. Inactivation of the Carney complex gene 1 (PRKAR1A) alters spatiotemporal regulation of cAMP and cAMP-dependent protein kinase: a study using genetically encoded FRET-based reporters. Cazabat L; Ragazzon B; Varin A; Potier-Cartereau M; Vandier C; Vezzosi D; Risk-Rabin M; Guellich A; Schittl J; Lechêne P; Richter W; Nikolaev VO; Zhang J; Bertherat J; Vandecasteele G Hum Mol Genet; 2014 Mar; 23(5):1163-74. PubMed ID: 24122441 [TBL] [Abstract][Full Text] [Related]
8. Sensitive genetically encoded sensors for population and subcellular imaging of cAMP in vivo. Massengill CI; Bayless-Edwards L; Ceballos CC; Cebul ER; Cahill J; Bharadwaj A; Wilson E; Qin M; Whorton MR; Baconguis I; Ye B; Mao T; Zhong H Nat Methods; 2022 Nov; 19(11):1461-1471. PubMed ID: 36303019 [TBL] [Abstract][Full Text] [Related]
9. Decoding spatial and temporal features of neuronal cAMP/PKA signaling with FRET biosensors. Castro LR; Guiot E; Polito M; Paupardin-Tritsch D; Vincent P Biotechnol J; 2014 Feb; 9(2):192-202. PubMed ID: 24478276 [TBL] [Abstract][Full Text] [Related]
12. Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET). Prinz A; Diskar M; Erlbruch A; Herberg FW Cell Signal; 2006 Oct; 18(10):1616-25. PubMed ID: 16524697 [TBL] [Abstract][Full Text] [Related]
13. Differential Pharmacophore Definition of the cAMP Binding Sites of Neuritogenic cAMP Sensor-Rapgef2, Protein Kinase A, and Exchange Protein Activated by cAMP in Neuroendocrine Cells Using an Adenine-Based Scaffold. Emery AC; Alvarez RA; Eiden MV; Xu W; Siméon FG; Eiden LE ACS Chem Neurosci; 2017 Jul; 8(7):1500-1509. PubMed ID: 28290664 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous assessment of cAMP signaling events in different cellular compartments using FRET-based reporters. Burdyga A; Lefkimmiatis K Methods Mol Biol; 2015; 1294():1-12. PubMed ID: 25783873 [TBL] [Abstract][Full Text] [Related]
15. [Physiopathology of cAMP/PKA signaling in neurons]. Castro L; Yapo C; Vincent P Biol Aujourdhui; 2016; 210(4):191-203. PubMed ID: 28327278 [TBL] [Abstract][Full Text] [Related]
16. Time-Domain Fluorescence Lifetime Imaging of cAMP Levels with EPAC-Based FRET Sensors. Kukk O; Klarenbeek J; Jalink K Methods Mol Biol; 2022; 2483():105-116. PubMed ID: 35286672 [TBL] [Abstract][Full Text] [Related]
17. A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range. Klarenbeek JB; Goedhart J; Hink MA; Gadella TW; Jalink K PLoS One; 2011 Apr; 6(4):e19170. PubMed ID: 21559477 [TBL] [Abstract][Full Text] [Related]
18. "cAMP sponge": a buffer for cyclic adenosine 3', 5'-monophosphate. Lefkimmiatis K; Moyer MP; Curci S; Hofer AM PLoS One; 2009 Nov; 4(11):e7649. PubMed ID: 19888343 [TBL] [Abstract][Full Text] [Related]
19. Repercussion of cAMP and EPAC in Memory and Signaling. Naz S; Mahmood T; Ahsan F; Rizvi AA; Shamim A Drug Res (Stuttg); 2022 Feb; 72(2):65-71. PubMed ID: 34979574 [TBL] [Abstract][Full Text] [Related]
20. Electroacupuncture improves neuronal plasticity through the A2AR/cAMP/PKA signaling pathway in SNL rats. Wu Q; Chen J; Yue J; Ying X; Zhou Y; Chen X; Tu W; Lou X; Yang G; Zhou K; Jiang S Neurochem Int; 2021 May; 145():104983. PubMed ID: 33577869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]