These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 34339753)

  • 41. Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator.
    Ponsioen B; Zhao J; Riedl J; Zwartkruis F; van der Krogt G; Zaccolo M; Moolenaar WH; Bos JL; Jalink K
    EMBO Rep; 2004 Dec; 5(12):1176-80. PubMed ID: 15550931
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PDE4 inhibitor, roflumilast protects cardiomyocytes against NO-induced apoptosis via activation of PKA and Epac dual pathways.
    Kwak HJ; Park KM; Choi HE; Chung KS; Lim HJ; Park HY
    Cell Signal; 2008 May; 20(5):803-14. PubMed ID: 18276108
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hyperspectral imaging and dynamic region of interest tracking approaches to quantify localized cAMP signals.
    Johnson SC; Annamdevula NS; Leavesley SJ; Francis CM; Rich TC
    Biochem Soc Trans; 2024 Feb; 52(1):191-203. PubMed ID: 38334148
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Imaging the cAMP Signaling Microdomain of the Primary Cilium Using Targeted FRET-Based Biosensors.
    Arena DT; Hofer AM
    Methods Mol Biol; 2022; 2483():77-92. PubMed ID: 35286670
    [TBL] [Abstract][Full Text] [Related]  

  • 45. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach.
    Ahmed MB; Alghamdi AAA; Islam SU; Lee JS; Lee YS
    Cells; 2022 Jun; 11(13):. PubMed ID: 35805104
    [TBL] [Abstract][Full Text] [Related]  

  • 46. cAMP-dependent protein kinase modulates expiratory neurons in vivo.
    Lalley PM; Pierrefiche O; Bischoff AM; Richter DW
    J Neurophysiol; 1997 Mar; 77(3):1119-31. PubMed ID: 9084586
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cyclic AMP and the regeneration of retinal ganglion cell axons.
    Hellström M; Harvey AR
    Int J Biochem Cell Biol; 2014 Nov; 56():66-73. PubMed ID: 24796847
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Subcellular location of PKA controls striatal plasticity: stochastic simulations in spiny dendrites.
    Oliveira RF; Kim M; Blackwell KT
    PLoS Comput Biol; 2012 Feb; 8(2):e1002383. PubMed ID: 22346744
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The cAMP effectors Epac and protein kinase a (PKA) are involved in the hepatic cystogenesis of an animal model of autosomal recessive polycystic kidney disease (ARPKD).
    Banales JM; Masyuk TV; Gradilone SA; Masyuk AI; Medina JF; LaRusso NF
    Hepatology; 2009 Jan; 49(1):160-74. PubMed ID: 19065671
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rac GTPase is a hub for protein kinase A and Epac signaling in endothelial barrier protection by cAMP.
    Birukova AA; Burdette D; Moldobaeva N; Xing J; Fu P; Birukov KG
    Microvasc Res; 2010 Mar; 79(2):128-38. PubMed ID: 19962392
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphatases control PKA-dependent functional microdomains at the outer mitochondrial membrane.
    Burdyga A; Surdo NC; Monterisi S; Di Benedetto G; Grisan F; Penna E; Pellegrini L; Zaccolo M; Bortolozzi M; Swietach P; Pozzan T; Lefkimmiatis K
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):E6497-E6506. PubMed ID: 29941564
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic monitoring of G
    Storch U; Straub J; Erdogmus S; Gudermann T; Mederos Y Schnitzler M
    Pflugers Arch; 2017 Jun; 469(5-6):725-737. PubMed ID: 28386636
    [TBL] [Abstract][Full Text] [Related]  

  • 53. C-type Natriuretic Peptide-induced PKA Activation Promotes Endochondral Bone Formation in Hypertrophic Chondrocytes.
    Hirota K; Hirashima T; Horikawa K; Yasoda A; Matsuda M
    Endocrinology; 2022 Mar; 163(3):. PubMed ID: 35041746
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cyclic adenosine 5'-monophosphate-stimulated neurotensin secretion is mediated through Rap1 downstream of both Epac and protein kinase A signaling pathways.
    Li J; O'Connor KL; Cheng X; Mei FC; Uchida T; Townsend CM; Evers BM
    Mol Endocrinol; 2007 Jan; 21(1):159-71. PubMed ID: 17068197
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Introducing fluorescence resonance energy transfer-based biosensors for the analysis of cAMP-PKA signalling in the fungal pathogen Candida glabrata.
    Demuyser L; Van Genechten W; Mizuno H; Colombo S; Van Dijck P
    Cell Microbiol; 2018 Oct; 20(10):e12863. PubMed ID: 29845711
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein kinase A type I and type II define distinct intracellular signaling compartments.
    Di Benedetto G; Zoccarato A; Lissandron V; Terrin A; Li X; Houslay MD; Baillie GS; Zaccolo M
    Circ Res; 2008 Oct; 103(8):836-44. PubMed ID: 18757829
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Orchestration of synaptic plasticity through AKAP signaling complexes.
    Bauman AL; Goehring AS; Scott JD
    Neuropharmacology; 2004 Mar; 46(3):299-310. PubMed ID: 14975685
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biochemical Activity Architectures Visualized-Using Genetically Encoded Fluorescent Biosensors to Map the Spatial Boundaries of Signaling Compartments.
    Mehta S; Zhang J
    Acc Chem Res; 2021 May; 54(10):2409-2420. PubMed ID: 33949851
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades.
    Dunn TA; Wang CT; Colicos MA; Zaccolo M; DiPilato LM; Zhang J; Tsien RY; Feller MB
    J Neurosci; 2006 Dec; 26(49):12807-15. PubMed ID: 17151284
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Imaging ERK and PKA Activation in Single Dendritic Spines during Structural Plasticity.
    Tang S; Yasuda R
    Neuron; 2017 Mar; 93(6):1315-1324.e3. PubMed ID: 28285819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.