These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34339775)

  • 1. A brief review on recent development of multidisciplinary engineering in fermentation of Saccharomyces cerevisiae.
    Zhuang S; Renault N; Archer I
    J Biotechnol; 2021 Sep; 339():32-41. PubMed ID: 34339775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.
    Kim SR; Park YC; Jin YS; Seo JH
    Biotechnol Adv; 2013 Nov; 31(6):851-61. PubMed ID: 23524005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose.
    Oh EJ; Jin YS
    FEMS Yeast Res; 2020 Feb; 20(1):. PubMed ID: 31917414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocommodity Engineering.
    Lynd LR; Wyman CE; Gerngross TU
    Biotechnol Prog; 1999 Oct; 15(5):777-793. PubMed ID: 10514248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S; Jin YS
    Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.
    Görgens JF; Bressler DC; van Rensburg E
    Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of
    Wang S; Zhao F; Yang M; Lin Y; Han S
    Crit Rev Biotechnol; 2024 Mar; 44(2):163-190. PubMed ID: 36596577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation.
    Chu BC; Lee H
    Biotechnol Adv; 2007; 25(5):425-41. PubMed ID: 17524590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on sustainable yeast biotechnological processes and applications.
    Nandy SK; Srivastava RK
    Microbiol Res; 2018 Mar; 207():83-90. PubMed ID: 29458873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.
    Borodina I; Nielsen J
    Biotechnol J; 2014 May; 9(5):609-20. PubMed ID: 24677744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From yeast genetics to biotechnology.
    Maráz A
    Acta Microbiol Immunol Hung; 2002; 49(4):483-91. PubMed ID: 12512257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status.
    van Maris AJ; Abbott DA; Bellissimi E; van den Brink J; Kuyper M; Luttik MA; Wisselink HW; Scheffers WA; van Dijken JP; Pronk JT
    Antonie Van Leeuwenhoek; 2006 Nov; 90(4):391-418. PubMed ID: 17033882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids.
    Hasunuma T; Sakamoto T; Kondo A
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):1027-38. PubMed ID: 26521247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism.
    Jayakody LN; Turner TL; Yun EJ; Kong II; Liu JJ; Jin YS
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):8121-8133. PubMed ID: 30027490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the potential of non-conventional yeasts in biotechnology.
    Geijer C; Ledesma-Amaro R; Tomás-Pejó E
    FEMS Yeast Res; 2022 Jan; 22(1):. PubMed ID: 35040953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions.
    Cunha JT; Romaní A; Costa CE; Sá-Correia I; Domingues L
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):159-175. PubMed ID: 30397768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Progress in studies on production of chemicals from xylose by Saccharomyces cerevisiae].
    Wang M; Luan T; Zhao J; Li H; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):1042-1057. PubMed ID: 33783167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylose Assimilation for the Efficient Production of Biofuels and Chemicals by Engineered Saccharomyces cerevisiae.
    Sun L; Jin YS
    Biotechnol J; 2021 Apr; 16(4):e2000142. PubMed ID: 33135317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Development and application of Saccharomyces cerevisiae cell-surface display for bioethanol production].
    Yang F; Cao M; Jin Y; Yang X; Tian S
    Sheng Wu Gong Cheng Xue Bao; 2012 Aug; 28(8):901-11. PubMed ID: 23185890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae].
    Wang C; Li H; Xu L; Shen Y; Hou J; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1543-1555. PubMed ID: 30394022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.