These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 34339775)
21. Display of phytase on the cell surface of Saccharomyces cerevisiae to degrade phytate phosphorus and improve bioethanol production. Chen X; Xiao Y; Shen W; Govender A; Zhang L; Fan Y; Wang Z Appl Microbiol Biotechnol; 2016 Mar; 100(5):2449-58. PubMed ID: 26610799 [TBL] [Abstract][Full Text] [Related]
22. Glutathione production by Saccharomyces cerevisiae: current state and perspectives. Santos LO; Silva PGP; Lemos Junior WJF; de Oliveira VS; Anschau A Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):1879-1894. PubMed ID: 35182192 [TBL] [Abstract][Full Text] [Related]
23. From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Van Dien S Curr Opin Biotechnol; 2013 Dec; 24(6):1061-8. PubMed ID: 23537815 [TBL] [Abstract][Full Text] [Related]
24. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering. Chen Y; Stabryla L; Wei N Appl Environ Microbiol; 2016 Jan; 82(7):2156-2166. PubMed ID: 26826231 [TBL] [Abstract][Full Text] [Related]
25. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. Hou J; Qiu C; Shen Y; Li H; Bao X FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582494 [TBL] [Abstract][Full Text] [Related]
26. Prospective and development of butanol as an advanced biofuel. Xue C; Zhao XQ; Liu CG; Chen LJ; Bai FW Biotechnol Adv; 2013 Dec; 31(8):1575-84. PubMed ID: 23993946 [TBL] [Abstract][Full Text] [Related]
27. Development of a glutathione production process from proteinaceous biomass resources using protease-displaying Saccharomyces cerevisiae. Hara KY; Kim S; Yoshida H; Kiriyama K; Kondo T; Okai N; Ogino C; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2012 Feb; 93(4):1495-502. PubMed ID: 22075633 [TBL] [Abstract][Full Text] [Related]
28. [Progress in the pathway engineering of ethanol fermentation from xylose utilising recombinant Saccharomyces cerevisiae]. Shen Y; Wang Y; Bao XM; Qu YB Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):636-40. PubMed ID: 15969099 [TBL] [Abstract][Full Text] [Related]
29. Promising advancement in fermentative succinic acid production by yeast hosts. Li C; Ong KL; Cui Z; Sang Z; Li X; Patria RD; Qi Q; Fickers P; Yan J; Lin CSK J Hazard Mater; 2021 Jan; 401():123414. PubMed ID: 32763704 [TBL] [Abstract][Full Text] [Related]
30. Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. Hong ME; Lee KS; Yu BJ; Sung YJ; Park SM; Koo HM; Kweon DH; Park JC; Jin YS J Biotechnol; 2010 Aug; 149(1-2):52-9. PubMed ID: 20600383 [TBL] [Abstract][Full Text] [Related]
33. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae. Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006 [TBL] [Abstract][Full Text] [Related]
34. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation. Cheng C; Zhang M; Xue C; Bai F; Zhao X J Biosci Bioeng; 2017 Feb; 123(2):141-146. PubMed ID: 27576171 [TBL] [Abstract][Full Text] [Related]
35. The role of peroxisomes in xylose alcoholic fermentation in the engineered Saccharomyces cerevisiae. Dzanaeva L; Kruk B; Ruchala J; Nielsen J; Sibirny A; Dmytruk K Cell Biol Int; 2020 Aug; 44(8):1606-1615. PubMed ID: 32227552 [TBL] [Abstract][Full Text] [Related]
36. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae. Semkiv MV; Dmytruk KV; Abbas CA; Sibirny AA Appl Microbiol Biotechnol; 2017 Jun; 101(11):4403-4416. PubMed ID: 28280870 [TBL] [Abstract][Full Text] [Related]
37. Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor. Yamada R; Nishikawa R; Wakita K; Ogino H J Ind Microbiol Biotechnol; 2018 May; 45(5):305-311. PubMed ID: 29605870 [TBL] [Abstract][Full Text] [Related]
38. Cellulosic ethanol production: Progress, challenges and strategies for solutions. Liu CG; Xiao Y; Xia XX; Zhao XQ; Peng L; Srinophakun P; Bai FW Biotechnol Adv; 2019; 37(3):491-504. PubMed ID: 30849432 [TBL] [Abstract][Full Text] [Related]
39. Exploiting strain diversity and rational engineering strategies to enhance recombinant cellulase secretion by Saccharomyces cerevisiae. Davison SA; den Haan R; van Zyl WH Appl Microbiol Biotechnol; 2020 Jun; 104(12):5163-5184. PubMed ID: 32337628 [TBL] [Abstract][Full Text] [Related]
40. Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production. Lee JW; Lee YG; Jin YS; Rao CV Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):5751-5767. PubMed ID: 34287658 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]