BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 34339778)

  • 1. Multimodal Machine Learning Using Visual Fields and Peripapillary Circular OCT Scans in Detection of Glaucomatous Optic Neuropathy.
    Xiong J; Li F; Song D; Tang G; He J; Gao K; Zhang H; Cheng W; Song Y; Lin F; Hu K; Wang P; Olivia Li JP; Aung T; Qiao Y; Zhang X; Ting D
    Ophthalmology; 2022 Feb; 129(2):171-180. PubMed ID: 34339778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs.
    Medeiros FA; Jammal AA; Thompson AC
    Ophthalmology; 2019 Apr; 126(4):513-521. PubMed ID: 30578810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus Photographs.
    Jammal AA; Thompson AC; Mariottoni EB; Berchuck SI; Urata CN; Estrela T; Wakil SM; Costa VP; Medeiros FA
    Am J Ophthalmol; 2020 Mar; 211():123-131. PubMed ID: 31730838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation of localized glaucomatous visual field defects and spectral domain optical coherence tomography retinal nerve fiber layer thinning using a modified structure-function map for OCT.
    Wu H; de Boer JF; Chen L; Chen TC
    Eye (Lond); 2015 Apr; 29(4):525-33. PubMed ID: 25633881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer.
    Montesano G; Bryan SR; Crabb DP; Fogagnolo P; Oddone F; McKendrick AM; Turpin A; Lanzetta P; Perdicchi A; Johnson CA; Garway-Heath DF; Brusini P; Rossetti LM
    Ophthalmology; 2019 Feb; 126(2):242-251. PubMed ID: 30114416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of optic nerve head topography findings in eyes with non-arteritic anterior ischemic optic neuropathy and eyes with glaucoma.
    Horowitz J; Fishelzon-Arev T; Rath EZ; Segev E; Geyer O
    Graefes Arch Clin Exp Ophthalmol; 2010 Jun; 248(6):845-51. PubMed ID: 20213479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans.
    Thompson AC; Jammal AA; Berchuck SI; Mariottoni EB; Medeiros FA
    JAMA Ophthalmol; 2020 Apr; 138(4):333-339. PubMed ID: 32053142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography.
    Zhang X; Loewen N; Tan O; Greenfield DS; Schuman JS; Varma R; Huang D;
    Am J Ophthalmol; 2016 Mar; 163():29-37. PubMed ID: 26627918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps.
    Christopher M; Bowd C; Belghith A; Goldbaum MH; Weinreb RN; Fazio MA; Girkin CA; Liebmann JM; Zangwill LM
    Ophthalmology; 2020 Mar; 127(3):346-356. PubMed ID: 31718841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Coherence Tomography Can Be Used to Assess Glaucomatous Optic Nerve Damage in Most Eyes With High Myopia.
    Zemborain ZZ; Jarukasetphon R; Tsamis E; De Moraes CG; Ritch R; Hood DC
    J Glaucoma; 2020 Oct; 29(10):833-845. PubMed ID: 33006872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression.
    Xu L; Asaoka R; Kiwaki T; Murata H; Fujino Y; Matsuura M; Hashimoto Y; Asano S; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K; Tanito M; Yamanishi K
    Am J Ophthalmol; 2020 Oct; 218():304-313. PubMed ID: 32387432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discriminating glaucomatous and compressive optic neuropathy on spectral-domain optical coherence tomography with deep learning classifier.
    Lee J; Kim JS; Lee HJ; Kim SJ; Kim YK; Park KH; Jeoung JW
    Br J Ophthalmol; 2020 Dec; 104(12):1717-1723. PubMed ID: 32098860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripapillary and Macular Vessel Density in Patients with Primary Open-Angle Glaucoma and Unilateral Visual Field Loss.
    Yarmohammadi A; Zangwill LM; Manalastas PIC; Fuller NJ; Diniz-Filho A; Saunders LJ; Suh MH; Hasenstab K; Weinreb RN
    Ophthalmology; 2018 Apr; 125(4):578-587. PubMed ID: 29174012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between Peripapillary Retinal Nerve Fiber Layer Thickness Measured by Optical Coherence Tomography and Visual Field Severity Indices.
    Kang EM; Hong S; Kim CY; Seong GJ
    Korean J Ophthalmol; 2015 Aug; 29(4):263-9. PubMed ID: 26240511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between deviation map algorithm and peripapillary retinal nerve fiber layer measurements using Cirrus HD-OCT in the detection of localized glaucomatous visual field defects.
    Kang SY; Sung KR; Na JH; Choi EH; Cho JW; Cheon MH; Kim KH; Kook MS
    J Glaucoma; 2012 Aug; 21(6):372-8. PubMed ID: 21430549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes.
    Bowd C; Hao J; Tavares IM; Medeiros FA; Zangwill LM; Lee TW; Sample PA; Weinreb RN; Goldbaum MH
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):945-53. PubMed ID: 18326717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Topographic Scoring System for Identifying Glaucoma in Myopic Eyes: A Spectral-Domain OCT Study.
    Baek SU; Kim KE; Kim YK; Park KH; Jeoung JW
    Ophthalmology; 2018 Nov; 125(11):1710-1719. PubMed ID: 29887333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnostic ability of Humphrey perimetry, Octopus perimetry, and optical coherence tomography for glaucomatous optic neuropathy.
    Monsalve B; Ferreras A; Calvo P; Urcola JA; Figus M; Monsalve J; Frezzotti P
    Eye (Lond); 2017 Mar; 31(3):443-451. PubMed ID: 27834960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring Glaucomatous Focal Perfusion Loss in the Peripapillary Retina Using OCT Angiography.
    Chen A; Liu L; Wang J; Zang P; Edmunds B; Lombardi L; Davis E; Morrison JC; Jia Y; Huang D
    Ophthalmology; 2020 Apr; 127(4):484-491. PubMed ID: 31899032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of retinal nerve fiber layer thickness and visual fields in glaucoma: a broken stick model.
    Alasil T; Wang K; Yu F; Field MG; Lee H; Baniasadi N; de Boer JF; Coleman AL; Chen TC
    Am J Ophthalmol; 2014 May; 157(5):953-59. PubMed ID: 24487047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.