These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 34340106)

  • 1. Automatic skull defect restoration and cranial implant generation for cranioplasty.
    Li J; von Campe G; Pepe A; Gsaxner C; Wang E; Chen X; Zefferer U; Tödtling M; Krall M; Deutschmann H; Schäfer U; Schmalstieg D; Egger J
    Med Image Anal; 2021 Oct; 73():102171. PubMed ID: 34340106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards clinical applicability and computational efficiency in automatic cranial implant design: An overview of the AutoImplant 2021 cranial implant design challenge.
    Li J; Ellis DG; Kodym O; Rauschenbach L; Rieß C; Sure U; Wrede KH; Alvarez CM; Wodzinski M; Daniol M; Hemmerling D; Mahdi H; Clement A; Kim E; Fishman Z; Whyne CM; Mainprize JG; Hardisty MR; Pathak S; Sindhura C; Gorthi RKSS; Kiran DV; Gorthi S; Yang B; Fang K; Li X; Kroviakov A; Yu L; Jin Y; Pepe A; Gsaxner C; Herout A; Alves V; Španěl M; Aizenberg MR; Kleesiek J; Egger J
    Med Image Anal; 2023 Aug; 88():102865. PubMed ID: 37331241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning for cranioplasty in clinical practice: Going from synthetic to real patient data.
    Kodym O; Španěl M; Herout A
    Comput Biol Med; 2021 Oct; 137():104766. PubMed ID: 34425418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Back to the Roots: Reconstructing Large and Complex Cranial Defects using an Image-based Statistical Shape Model.
    Li J; Ellis DG; Pepe A; Gsaxner C; Aizenberg MR; Kleesiek J; Egger J
    J Med Syst; 2024 May; 48(1):55. PubMed ID: 38780820
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Li J; Krall M; Trummer F; Memon AR; Pepe A; Gsaxner C; Jin Y; Chen X; Deutschmann H; Zefferer U; Schäfer U; Campe GV; Egger J
    Data Brief; 2021 Dec; 39():107524. PubMed ID: 34815988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparse convolutional neural network for high-resolution skull shape completion and shape super-resolution.
    Li J; Gsaxner C; Pepe A; Schmalstieg D; Kleesiek J; Egger J
    Sci Rep; 2023 Nov; 13(1):20229. PubMed ID: 37981641
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Kodym O; Li J; Pepe A; Gsaxner C; Chilamkurthy S; Egger J; Španěl M
    Data Brief; 2021 Apr; 35():106902. PubMed ID: 33997188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skull shape reconstruction using cascaded convolutional networks.
    Kodym O; Španěl M; Herout A
    Comput Biol Med; 2020 Aug; 123():103886. PubMed ID: 32658793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional deep learning to automatically generate cranial implant geometry.
    Wu CT; Yang YH; Chang YZ
    Sci Rep; 2022 Feb; 12(1):2683. PubMed ID: 35177704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional reconstruction of cranial defect using active contour model and image registration.
    Liao YL; Lu CF; Sun YN; Wu CT; Lee JD; Lee ST; Wu YT
    Med Biol Eng Comput; 2011 Feb; 49(2):203-11. PubMed ID: 21128121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thickness and design features of clinical cranial implants-what should automated methods strive to replicate?
    Fishman Z; Mainprize JG; Edwards G; Antonyshyn O; Hardisty M; Whyne CM
    Int J Comput Assist Radiol Surg; 2024 Apr; 19(4):747-756. PubMed ID: 38430381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creating high-resolution 3D cranial implant geometry using deep learning techniques.
    Wu CT; Yang YH; Chang YZ
    Front Bioeng Biotechnol; 2023; 11():1297933. PubMed ID: 38149174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-based framework for automatic cranial defect reconstruction and implant modeling.
    Wodzinski M; Daniol M; Socha M; Hemmerling D; Stanuch M; Skalski A
    Comput Methods Programs Biomed; 2022 Nov; 226():107173. PubMed ID: 36257198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-Guided In-House Cranioplasty: Establishing a Novel Standard for Cranial Reconstruction and Proposal of an Updated Protocol.
    Tel A; Tuniz F; Fabbro S; Sembronio S; Costa F; Robiony M
    J Oral Maxillofac Surg; 2020 Dec; 78(12):2297.e1-2297.e16. PubMed ID: 32898484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Next-generation personalized cranioplasty treatment.
    Thimukonda Jegadeesan J; Baldia M; Basu B
    Acta Biomater; 2022 Dec; 154():63-82. PubMed ID: 36272686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer aided design of large-format prefabricated cranial plates.
    Dean D; Min KJ; Bond A
    J Craniofac Surg; 2003 Nov; 14(6):819-32. PubMed ID: 14600623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The feasibility of producing patient-specific acrylic cranioplasty implants with a low-cost 3D printer.
    Tan ET; Ling JM; Dinesh SK
    J Neurosurg; 2016 May; 124(5):1531-7. PubMed ID: 26566203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic hole repairing for cranioplasty using Bézier surface approximation.
    Chong CS; Lee H; Kumar AS
    J Craniofac Surg; 2006 Mar; 17(2):344-52. PubMed ID: 16633186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified acrylic cranioplasty for large cranial defects.
    Werndle MC; Crocker M; Zoumprouli A; Papadopoulos MC
    Clin Neurol Neurosurg; 2012 Sep; 114(7):962-4. PubMed ID: 22402199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic skull bone defects for automatic patient-specific craniofacial implant design.
    Li J; Gsaxner C; Pepe A; Morais A; Alves V; von Campe G; Wallner J; Egger J
    Sci Data; 2021 Jan; 8(1):36. PubMed ID: 33514740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.