BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34340246)

  • 21. Effect Estimation in Point-Exposure Studies with Binary Outcomes and High-Dimensional Covariate Data - A Comparison of Targeted Maximum Likelihood Estimation and Inverse Probability of Treatment Weighting.
    Pang M; Schuster T; Filion KB; Schnitzer ME; Eberg M; Platt RW
    Int J Biostat; 2016 Nov; 12(2):. PubMed ID: 27889705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of longitudinal data from outcome-dependent visit processes: Failure of proposed methods in realistic settings and potential improvements.
    Neuhaus JM; McCulloch CE; Boylan RD
    Stat Med; 2018 Dec; 37(29):4457-4471. PubMed ID: 30112825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Marginal analysis of ordinal clustered longitudinal data with informative cluster size.
    Mitani AA; Kaye EK; Nelson KP
    Biometrics; 2019 Sep; 75(3):938-949. PubMed ID: 30859544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inverse Probability Weights for Quasicontinuous Ordinal Exposures With a Binary Outcome: Method Comparison and Case Study.
    Sack DE; Shepherd BE; Audet CM; De Schacht C; Samuels LR
    Am J Epidemiol; 2023 Jul; 192(7):1192-1206. PubMed ID: 37067471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regression modeling of longitudinal data with outcome-dependent observation times: extensions and comparative evaluation.
    Tan KS; French B; Troxel AB
    Stat Med; 2014 Nov; 33(27):4770-89. PubMed ID: 25052289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantile regression analysis of censored longitudinal data with irregular outcome-dependent follow-up.
    Sun X; Peng L; Manatunga A; Marcus M
    Biometrics; 2016 Mar; 72(1):64-73. PubMed ID: 26237289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of marginal structural models under irregular visits and unmeasured confounder: calibrated inverse probability weights.
    Kalia S; Saarela O; Escobar M; Moineddin R; Greiver M
    BMC Med Res Methodol; 2023 Jan; 23(1):4. PubMed ID: 36611135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiply robust estimation of causal quantile treatment effects.
    Xie Y; Cotton C; Zhu Y
    Stat Med; 2020 Dec; 39(28):4238-4251. PubMed ID: 32857876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Missing data in the exposure of interest and marginal structural models: a simulation study based on the Framingham Heart Study.
    Shortreed SM; Forbes AB
    Stat Med; 2010 Feb; 29(4):431-43. PubMed ID: 20025082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A graphical perspective of marginal structural models: An application for the estimation of the effect of physical activity on blood pressure.
    Talbot D; Rossi AM; Bacon SL; Atherton J; Lefebvre G
    Stat Methods Med Res; 2018 Aug; 27(8):2428-2436. PubMed ID: 27920366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating individualized treatment rules in longitudinal studies with covariate-driven observation times.
    Coulombe J; Moodie EE; Shortreed SM; Renoux C
    Stat Methods Med Res; 2023 May; 32(5):868-884. PubMed ID: 36927216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural equation modeling versus marginal structural modeling for assessing mediation in the presence of posttreatment confounding.
    Moerkerke B; Loeys T; Vansteelandt S
    Psychol Methods; 2015 Jun; 20(2):204-20. PubMed ID: 25751514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding Marginal Structural Models for Time-Varying Exposures: Pitfalls and Tips.
    Shinozaki T; Suzuki E
    J Epidemiol; 2020 Sep; 30(9):377-389. PubMed ID: 32684529
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A cautionary note concerning the use of stabilized weights in marginal structural models.
    Talbot D; Atherton J; Rossi AM; Bacon SL; Lefebvre G
    Stat Med; 2015 Feb; 34(5):812-23. PubMed ID: 25410264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced precision in the analysis of randomized trials with ordinal outcomes.
    Díaz I; Colantuoni E; Rosenblum M
    Biometrics; 2016 Jun; 72(2):422-31. PubMed ID: 26576013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing approaches to causal inference for longitudinal data: inverse probability weighting versus propensity scores.
    Ertefaie A; Stephens DA
    Int J Biostat; 2010; 6(2):Article 14. PubMed ID: 21969998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Causal inference for recurrent events via aggregated marginal odds ratio.
    Zhang W; Cotton CA
    Stat Med; 2023 Aug; 42(18):3208-3235. PubMed ID: 37293813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A transformation perspective on marginal and conditional models.
    Barbanti L; Hothorn T
    Biostatistics; 2024 Apr; 25(2):402-428. PubMed ID: 36534895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models.
    Wang C; Dominici F; Parmigiani G; Zigler CM
    Biometrics; 2015 Sep; 71(3):654-65. PubMed ID: 25899155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Causal inference with measurement error in outcomes: Bias analysis and estimation methods.
    Shu D; Yi GY
    Stat Methods Med Res; 2019 Jul; 28(7):2049-2068. PubMed ID: 29241426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.