These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 34340306)
1. Carbon Nanotube Based Radio Frequency Transistors for K-Band Amplifiers. Zhou J; Liu L; Shi H; Zhu M; Cheng X; Ren L; Ding L; Peng LM; Zhang Z ACS Appl Mater Interfaces; 2021 Aug; 13(31):37475-37482. PubMed ID: 34340306 [TBL] [Abstract][Full Text] [Related]
2. Carbon Nanotube Film-Based Radio Frequency Transistors with Maximum Oscillation Frequency above 100 GHz. Zhong D; Shi H; Ding L; Zhao C; Liu J; Zhou J; Zhang Z; Peng LM ACS Appl Mater Interfaces; 2019 Nov; 11(45):42496-42503. PubMed ID: 31618003 [TBL] [Abstract][Full Text] [Related]
3. Ku-Band Mixers Based on Random-Oriented Carbon Nanotube Films. Chang M; Qian J; Li Z; Cheng X; Wang Y; Fan L; Cao J; Ding L Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470780 [TBL] [Abstract][Full Text] [Related]
4. Improving Carbon Nanotube-Based Radiofrequency Field-Effect Transistors by the Device Architecture and Doping Process. Ren L; Zhou J; Pan Z; Li H; Ding L; Zhang Z; Peng LM ACS Appl Mater Interfaces; 2024 Mar; 16(10):12813-12820. PubMed ID: 38412248 [TBL] [Abstract][Full Text] [Related]
5. Aligned Carbon Nanotubes-Based Radiofrequency Transistors for Amplitude Amplification and Frequency Conversion at Millimeter Wave Band. Qian J; Cheng X; Zhou J; Cao J; Ding L ACS Nano; 2023 Aug; 17(15):14742-14749. PubMed ID: 37464538 [TBL] [Abstract][Full Text] [Related]
6. Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz. Cao Y; Brady GJ; Gui H; Rutherglen C; Arnold MS; Zhou C ACS Nano; 2016 Jul; 10(7):6782-90. PubMed ID: 27327074 [TBL] [Abstract][Full Text] [Related]
7. Radio Frequency Transistors and Circuits Based on CVD MoS2. Sanne A; Ghosh R; Rai A; Yogeesh MN; Shin SH; Sharma A; Jarvis K; Mathew L; Rao R; Akinwande D; Banerjee S Nano Lett; 2015 Aug; 15(8):5039-45. PubMed ID: 26134588 [TBL] [Abstract][Full Text] [Related]
8. High-Temperature-Annealed Flexible Carbon Nanotube Network Transistors for High-Frequency Wearable Wireless Electronics. Lan Y; Yang Y; Wang Y; Wu Y; Cao Z; Huo S; Jiang L; Guo Y; Wu Y; Yan B; Xu R; Chen Y; Li Y; Lal S; Ma Z; Xu Y ACS Appl Mater Interfaces; 2020 Jun; 12(23):26145-26152. PubMed ID: 32410452 [TBL] [Abstract][Full Text] [Related]
10. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films. Yang Y; Ding L; Han J; Zhang Z; Peng LM ACS Nano; 2017 Apr; 11(4):4124-4132. PubMed ID: 28333433 [TBL] [Abstract][Full Text] [Related]
11. Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes. Wang C; Badmaev A; Jooyaie A; Bao M; Wang KL; Galatsis K; Zhou C ACS Nano; 2011 May; 5(5):4169-76. PubMed ID: 21517104 [TBL] [Abstract][Full Text] [Related]
12. Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits. Chen B; Zhang P; Ding L; Han J; Qiu S; Li Q; Zhang Z; Peng LM Nano Lett; 2016 Aug; 16(8):5120-8. PubMed ID: 27459084 [TBL] [Abstract][Full Text] [Related]
13. T-gate aligned nanotube radio frequency transistors and circuits with superior performance. Che Y; Lin YC; Kim P; Zhou C ACS Nano; 2013 May; 7(5):4343-50. PubMed ID: 23590623 [TBL] [Abstract][Full Text] [Related]
14. Self-aligned T-gate high-purity semiconducting carbon nanotube RF transistors operated in quasi-ballistic transport and quantum capacitance regime. Che Y; Badmaev A; Jooyaie A; Wu T; Zhang J; Wang C; Galatsis K; Enaya HA; Zhou C ACS Nano; 2012 Aug; 6(8):6936-43. PubMed ID: 22768974 [TBL] [Abstract][Full Text] [Related]
15. Improved Drain Current Saturation and Voltage Gain in Graphene-on-Silicon Field Effect Transistors. Song SM; Bong JH; Hwang WS; Cho BJ Sci Rep; 2016 May; 6():25392. PubMed ID: 27142861 [TBL] [Abstract][Full Text] [Related]
16. Can Carbon Nanotube Transistors Be Scaled Down to the Sub-5 nm Gate Length? Xu L; Yang J; Qiu C; Liu S; Zhou W; Li Q; Shi B; Ma J; Yang C; Lu J; Zhang Z ACS Appl Mater Interfaces; 2021 Jul; 13(27):31957-31967. PubMed ID: 34210135 [TBL] [Abstract][Full Text] [Related]
17. Black Phosphorus Flexible Thin Film Transistors at Gighertz Frequencies. Zhu W; Park S; Yogeesh MN; McNicholas KM; Bank SR; Akinwande D Nano Lett; 2016 Apr; 16(4):2301-6. PubMed ID: 26977902 [TBL] [Abstract][Full Text] [Related]
18. S-band hybrid amplifiers based on hydrogenated diamond FETs. Ciccognani W; Colangeli S; Verona C; Di Pietrantonio F; Cannatà D; Benetti M; Camarchia V; Pirola M; Longhi PE; Verona Rinati G; Marinelli M; Limiti E Sci Rep; 2020 Nov; 10(1):19029. PubMed ID: 33149255 [TBL] [Abstract][Full Text] [Related]
19. A 26-GHz transmitter front-end using double quadrature architecture. Lee HS; Park M; Min BW PLoS One; 2019; 14(5):e0216474. PubMed ID: 31120917 [TBL] [Abstract][Full Text] [Related]
20. RF-SOI Low-Noise Amplifier Using RC Feedback and Series Inductive-Peaking Techniques for 5G New Radio Application. Kim MS; Yoo SS Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]