These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34340340)

  • 1. Generalized splay states in phase oscillator networks.
    Berner R; Yanchuk S; Maistrenko Y; Schöll E
    Chaos; 2021 Jul; 31(7):073128. PubMed ID: 34340340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaos in generically coupled phase oscillator networks with nonpairwise interactions.
    Bick C; Ashwin P; Rodrigues A
    Chaos; 2016 Sep; 26(9):094814. PubMed ID: 27781441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter.
    Chen B; Engelbrecht JR; Mirollo R
    Chaos; 2019 Jan; 29(1):013126. PubMed ID: 30709124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Order parameter allows classification of planar graphs based on balanced fixed points in the Kuramoto model.
    Kaiser F; Alim K
    Phys Rev E; 2019 May; 99(5-1):052308. PubMed ID: 31212471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of rotatory solitary states in Kuramoto networks with inertia.
    Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh IV
    Phys Rev E; 2022 Feb; 105(2-1):024203. PubMed ID: 35291064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclops States in Repulsive Kuramoto Networks: The Role of Higher-Order Coupling.
    Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh I
    Phys Rev Lett; 2023 Mar; 130(10):107201. PubMed ID: 36962033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators.
    Yue W; Smith LD; Gottwald GA
    Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability and bifurcation of collective dynamics in phase oscillator populations with general coupling.
    Xu C; Wang X; Zheng Z; Cai Z
    Phys Rev E; 2021 Mar; 103(3-1):032307. PubMed ID: 33862749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence and analysis of Kuramoto-Sakaguchi-like models as an effective description for the dynamics of coupled Wien-bridge oscillators.
    English LQ; Mertens D; Abdoulkary S; Fritz CB; Skowronski K; Kevrekidis PG
    Phys Rev E; 2016 Dec; 94(6-1):062212. PubMed ID: 28085391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-locked regimes in delay-coupled oscillator networks.
    Punetha N; Prasad A; Ramaswamy R
    Chaos; 2014 Dec; 24(4):043111. PubMed ID: 25554031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonequilibrium first-order phase transition in coupled oscillator systems with inertia and noise.
    Gupta S; Campa A; Ruffo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022123. PubMed ID: 25353438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized splay state in coupled chaotic oscillators induced by weak mutual resonant interactions.
    Zhan M; Hu G; Zhang Y; He D
    Phys Rev Lett; 2001 Feb; 86(8):1510-3. PubMed ID: 11290180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states.
    Choe CU; Dahms T; Hövel P; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):025205. PubMed ID: 20365621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise.
    Gong CC; Zheng C; Toenjes R; Pikovsky A
    Chaos; 2019 Mar; 29(3):033127. PubMed ID: 30927833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive oscillator networks with conserved overall coupling: sequential firing and near-synchronized states.
    Picallo CB; Riecke H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036206. PubMed ID: 21517574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Sakaguchi-Kuramoto model in presence of asymmetric interactions that break phase-shift symmetry.
    Manoranjani M; Gupta S; Chandrasekar VK
    Chaos; 2021 Aug; 31(8):083130. PubMed ID: 34470257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chimeras and solitary states in 3D oscillator networks with inertia.
    Maistrenko V; Sudakov O; Osiv O
    Chaos; 2020 Jun; 30(6):063113. PubMed ID: 32611131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Higher-order interactions in Kuramoto oscillators with inertia.
    Jaros P; Ghosh S; Dudkowski D; Dana SK; Kapitaniak T
    Phys Rev E; 2023 Aug; 108(2-1):024215. PubMed ID: 37723775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breathing and switching cyclops states in Kuramoto networks with higher-mode coupling.
    Bolotov MI; Munyayev VO; Smirnov LA; Osipov GV; Belykh I
    Phys Rev E; 2024 May; 109(5-1):054202. PubMed ID: 38907462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kuramoto dynamics in Hamiltonian systems.
    Witthaut D; Timme M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032917. PubMed ID: 25314514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.