BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34340422)

  • 1. Horizon: Microfluidic platform for the production of therapeutic microbubbles and nanobubbles.
    Abou-Saleh RH; Armistead FJ; Batchelor DVB; Johnson BRG; Peyman SA; Evans SD
    Rev Sci Instrum; 2021 Jul; 92(7):074105. PubMed ID: 34340422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaleable production of microbubbles using an ultrasound-modulated microfluidic device.
    Carugo D; Browning RJ; Iranmanesh I; Messaoudi W; Rademeyer P; Stride E
    J Acoust Soc Am; 2021 Aug; 150(2):1577. PubMed ID: 34470259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation.
    Lin H; Chen J; Chen C
    Med Biol Eng Comput; 2016 Sep; 54(9):1317-30. PubMed ID: 27016369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vitro Sonothrombolysis Enhancement by Transiently Stable Microbubbles Produced by a Flow-Focusing Microfluidic Device.
    Dixon AJ; Rickel JMR; Shin BD; Klibanov AL; Hossack JA
    Ann Biomed Eng; 2018 Feb; 46(2):222-232. PubMed ID: 29192346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy.
    Seo M; Gorelikov I; Williams R; Matsuura N
    Langmuir; 2010 Sep; 26(17):13855-60. PubMed ID: 20666507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Ultrasound and Capillary-Embedded T-Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation.
    Khan AH; Jiang X; Kaushik A; Nair HS; Edirisinghe M; Mercado-Shekhar KP; Shekhar H; Dalvi SV
    Langmuir; 2022 Aug; 38(33):10288-10304. PubMed ID: 35943351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Generation of Monodisperse Nanobubbles by Selective Gas Dissolution.
    Xu J; Salari A; Wang Y; He X; Kerr L; Darbandi A; de Leon AC; Exner AA; Kolios MC; Yuen D; Tsai SSH
    Small; 2021 May; 17(20):e2100345. PubMed ID: 33811441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Theranostic Microbubbles Using Microfluidics for Ultrasound Imaging and Therapy: A Review.
    Pulsipher KW; Hammer DA; Lee D; Sehgal CM
    Ultrasound Med Biol; 2018 Dec; 44(12):2441-2460. PubMed ID: 30241729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Evaluation of Clinically Translatable Targeted Microbubbles Using a Microfluidic Device for In Vivo Ultrasound Molecular Imaging.
    Bam R; Natarajan A; Tabesh F; Paulmurugan R; Dahl JJ
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the Echogenic Properties of Microfluidic Microbubbles Using Mixtures of Recombinant Protein and Amphiphilic Copolymers.
    Chen Z; Pulsipher KW; Chattaraj R; Hammer DA; Sehgal CM; Lee D
    Langmuir; 2019 Aug; 35(31):10079-10086. PubMed ID: 30768278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ethylene glycol) lipid-shelled microbubbles: abundance, stability, and mechanical properties.
    Abou-Saleh RH; Swain M; Evans SD; Thomson NH
    Langmuir; 2014 May; 30(19):5557-63. PubMed ID: 24758714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbubbles for human diagnosis and therapy.
    Fournier L; de La Taille T; Chauvierre C
    Biomaterials; 2023 Mar; 294():122025. PubMed ID: 36716588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable Formation of Monodisperse Polymer Microbubbles as Ultrasound Contrast Agents.
    Song R; Peng C; Xu X; Wang J; Yu M; Hou Y; Zou R; Yao S
    ACS Appl Mater Interfaces; 2018 May; 10(17):14312-14320. PubMed ID: 29637761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of encapsulated gas on stability of lipid-based microbubbles and ultrasound-triggered drug delivery.
    Omata D; Maruyama T; Unga J; Hagiwara F; Munakata L; Kageyama S; Shima T; Suzuki Y; Maruyama K; Suzuki R
    J Control Release; 2019 Oct; 311-312():65-73. PubMed ID: 31461665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional microbubbles and nanobubbles for photoacoustic imaging.
    Xu RX
    Contrast Media Mol Imaging; 2011; 6(5):401-11. PubMed ID: 22025340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput microfluidics for evaluating microbubble enhanced delivery of cancer therapeutics in spheroid cultures.
    Bourn MD; Batchelor DVB; Ingram N; McLaughlan JR; Coletta PL; Evans SD; Peyman SA
    J Control Release; 2020 Oct; 326():13-24. PubMed ID: 32562855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid Flooded Flow-Focusing Microfluidic Device for in situ Generation of Monodisperse Microbubbles.
    Dhanaliwala AH; Chen JL; Wang S; Hossack JA
    Microfluid Nanofluidics; 2013 Mar; 14(3-4):457-467. PubMed ID: 23439786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled Tempering of Lipid Concentration and Microbubble Shrinkage as a Possible Mechanism for Fine-Tuning Microbubble Size and Shell Properties.
    Zalloum IO; Jafari Sojahrood A; Paknahad AA; Kolios MC; Tsai SSH; Karshafian R
    Langmuir; 2023 Dec; 39(49):17622-17631. PubMed ID: 38016673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods of preparation of multifunctional microbubbles and their in vitro / in vivo assessment of stability, functional and structural properties.
    Cavalieri F; Zhou M; Tortora M; Lucilla B; Ashokkumar M
    Curr Pharm Des; 2012; 18(15):2135-51. PubMed ID: 22352769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive update of micro- and nanobubbles as theranostics in oncology.
    Jose AD; Wu Z; Thakur SS
    Eur J Pharm Biopharm; 2022 Mar; 172():123-133. PubMed ID: 35181491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.