BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34340457)

  • 1. Flow and structural analysis of sedimentary rocks by core flooding and nuclear magnetic resonance: A review.
    Umeobi HI; Li Q; Xu L; Tan Y; Onyekwena CC
    Rev Sci Instrum; 2021 Jul; 92(7):071501. PubMed ID: 34340457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Foam Microbubbles on Electrical Resistivity and Capillary Pressure of Partially Saturated Porous Media.
    R Adebayo A; Isah A; Mahmoud M; Al-Shehri D
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Study on the Mechanism and Law of Low-Salinity Water Flooding for Enhanced Oil Recovery in Tight Sandstone Reservoirs.
    Fan P; Liu Y; He Y; Hu Y; Chao L; Wang Y; Liu L; Li J
    ACS Omega; 2024 Mar; 9(11):12665-12675. PubMed ID: 38524499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore-scale Imaging and Characterization of Hydrocarbon Reservoir Rock Wettability at Subsurface Conditions Using X-ray Microtomography.
    Alhammadi AM; AlRatrout A; Bijeljic B; Blunt MJ
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30394374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wettability of rock/CO
    Arif M; Abu-Khamsin SA; Iglauer S
    Adv Colloid Interface Sci; 2019 Jun; 268():91-113. PubMed ID: 30999164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the Effects of Pore Size Distribution on the Flowing Behavior of Carbonate Rocks: Linking a Nano-Based Enhanced Oil Recovery Method to Rock Typing.
    Rezaei A; Abdollahi H; Derikvand Z; Hemmati-Sarapardeh A; Mosavi A; Nabipour N
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32443641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling Microfluidics Data with Core Flooding Experiments to Understand Sulfonated/Polymer Water Injection.
    Tahir M; Hincapie RE; Langanke N; Ganzer L; Jaeger P
    Polymers (Basel); 2020 May; 12(6):. PubMed ID: 32481627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of mineralogy and wettability on pore-scale displacement of NAPLs in heterogeneous porous media.
    Arshadi M; Gesho M; Qin T; Goual L; Piri M
    J Contam Hydrol; 2020 Mar; 230():103599. PubMed ID: 31932069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore-Scale Geochemical Reactivity Associated with CO
    Noiriel C; Daval D
    Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of phase topology evolution during three-phase displacements in porous media.
    Osei-Bonsu K; Khorsandi S; Piri M
    Lab Chip; 2020 Jul; 20(14):2495-2509. PubMed ID: 32514505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalisation of Polydimethylsiloxane (PDMS)- Microfluidic Devices coated with Rock Minerals.
    Alzahid YA; Mostaghimi P; Gerami A; Singh A; Privat K; Amirian T; Armstrong RT
    Sci Rep; 2018 Oct; 8(1):15518. PubMed ID: 30341346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. k-t acceleration in pure phase encode MRI to monitor dynamic flooding processes in rock core plugs.
    Xiao D; Balcom BJ
    J Magn Reson; 2014 Jun; 243():114-21. PubMed ID: 24809307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress-Dependent Pore Deformation Effects on Multiphase Flow Properties of Porous Media.
    Haghi AH; Chalaturnyk R; Talman S
    Sci Rep; 2019 Oct; 9(1):15004. PubMed ID: 31628400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real structure micromodels based on reservoir rocks for enhanced oil recovery (EOR) applications.
    Gaol CL; Wegner J; Ganzer L
    Lab Chip; 2020 Jun; 20(12):2197-2208. PubMed ID: 32426764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-flood experiment for transport of reactive fluids in rocks.
    Ott H; de Kloe K; van Bakel M; Vos F; van Pelt A; Legerstee P; Bauer A; Eide K; van der Linden A; Berg S; Makurat A
    Rev Sci Instrum; 2012 Aug; 83(8):084501. PubMed ID: 22938317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media.
    Hashemi L; Blunt M; Hajibeygi H
    Sci Rep; 2021 Apr; 11(1):8348. PubMed ID: 33863943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-Dependent Physicochemical Changes of Carbonate Surfaces from SmartWater (Diluted Seawater) Flooding Processes for Improved Oil Recovery.
    Chen SY; Kristiansen K; Seo D; Cadirov NA; Dobbs HA; Kaufman Y; Schrader AM; Andresen Eguiluz RC; Alotaibi MB; Ayirala SC; Boles JR; Yousef AA; Israelachvili JN
    Langmuir; 2019 Jan; 35(1):41-50. PubMed ID: 30509072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.
    Singh R; Sivaguru M; Fried GA; Fouke BW; Sanford RA; Carrera M; Werth CJ
    J Contam Hydrol; 2017 Sep; 204():28-39. PubMed ID: 28802767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High pressure-elevated temperature x-ray micro-computed tomography for subsurface applications.
    Iglauer S; Lebedev M
    Adv Colloid Interface Sci; 2018 Jun; 256():393-410. PubMed ID: 29526246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.