These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 34340486)

  • 1. The bassoon tonehole lattice: Links between the open and closed holes and the radiated sound spectrum.
    Petersen EA; Colinot T; Silva F; H-Turcotte V
    J Acoust Soc Am; 2021 Jul; 150(1):398. PubMed ID: 34340486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study of the effects of the long chimney of a closed tonehole on the sound of a bassoon.
    Ernoult A; Grothe T
    J Acoust Soc Am; 2023 Feb; 153(2):1229. PubMed ID: 36859156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the cutoff frequency on the sound production of a clarinet-like instrument.
    Petersen E; Guillemain P; Kergomard J; Colinot T
    J Acoust Soc Am; 2019 Jun; 145(6):3784. PubMed ID: 31255117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of woodwind instrument toneholes with the finite element method.
    Lefebvre A; Scavone GP
    J Acoust Soc Am; 2012 Apr; 131(4):3153-63. PubMed ID: 22501087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chimney tube in musical acoustics: A textbook-level formulation for students and musicians.
    Saenger KL
    J Acoust Soc Am; 2022 Jul; 152(1):540. PubMed ID: 35931525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dual influence of the reed resonance frequency and tonehole lattice cutoff frequency on sound production and radiation of a clarinet-like instrument.
    Petersen EA; Guillemain P; Jousserand M
    J Acoust Soc Am; 2022 Jun; 151(6):3780. PubMed ID: 35778204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear-acoustic effects of asymmetrical undercutting of toneholes of woodwind instruments.
    Gerasimov R
    J Acoust Soc Am; 2024 Oct; 156(4):2644-2655. PubMed ID: 39417656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of open woodwind toneholes by the tube reversed method.
    Garcia Mayén H; Kergomard J; Vergez C; Guillemain P; Jousserand M; Pachebat M; Sanchez P
    J Acoust Soc Am; 2021 Nov; 150(5):3763. PubMed ID: 34852613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cutoff frequencies and cross fingerings in baroque, classical, and modern flutes.
    Wolfe J; Smith J
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2263-72. PubMed ID: 14587623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pressure-based transfer matrix method and measurement technique for studying resonances in flutes and other open-input resonators.
    Saenger KL
    J Acoust Soc Am; 2020 Apr; 147(4):2556. PubMed ID: 32359327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The F1-F2 vowel chart for Czech whispered vowels a, e, i, o, u.
    Grepl M; Furst T; Pesak J
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2007 Dec; 151(2):353-6. PubMed ID: 18345278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A finite element model of the tuning slot of labial organ pipes.
    Rucz P; Augusztinovicz F; Angster J; Preukschat T; Miklós A
    J Acoust Soc Am; 2015 Mar; 137(3):1226-37. PubMed ID: 25786936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Woodwind instrument design optimization based on impedance characteristics with geometric constraints.
    Ernoult A; Vergez C; Missoum S; Guillemain P; Jousserand M
    J Acoust Soc Am; 2020 Nov; 148(5):2864. PubMed ID: 33261417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study of AO and T1 modes of the concert harp.
    Le Carrou JL; Gautier F; Foltête E
    J Acoust Soc Am; 2007 Jan; 121(1):559-67. PubMed ID: 17297809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of the coupling between the top plate and the fingerboard on the acoustic power radiated by a classical guitar (L).
    García-Mayén H; Santillán A
    J Acoust Soc Am; 2011 Mar; 129(3):1153-6. PubMed ID: 21428477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loudness perception of low tones undergoing partial masking by higher tones in orchestral music in concert halls.
    Nishihara N; Hidaka T
    J Acoust Soc Am; 2012 Aug; 132(2):799-803. PubMed ID: 22894202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sound transmission between 50 and 600 Hz in excised pig lungs filled with air and helium.
    Leung A; Sehati S; Young JD; McLeod C
    J Appl Physiol (1985); 2000 Dec; 89(6):2472-82. PubMed ID: 11090604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. THE SCALING OF SONG FREQUENCY IN CICADAS.
    Bennet-Clark H; Young D
    J Exp Biol; 1994 Jun; 191(1):291-4. PubMed ID: 9317830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear frequency shifts in acoustical resonators with varying cross sections.
    Hamilton MF; Ilinskii YA; Zabolotskaya EA
    J Acoust Soc Am; 2009 Mar; 125(3):1310-9. PubMed ID: 19275288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of internal resistance of a Helmholtz resonator on acoustic energy reduction in enclosures.
    Yu G; Li D; Cheng L
    J Acoust Soc Am; 2008 Dec; 124(6):3534-43. PubMed ID: 19206783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.